人脸识别——Webface-OCC遮挡人脸识别算法解析

2024-05-29 01:20

本文主要是介绍人脸识别——Webface-OCC遮挡人脸识别算法解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 概述

自2019年被誉为人脸识别技术的元年,各地纷纷引入这项技术。然而,自2020年起,为了抵御冠状病毒(COVID-19)的全球传播,人们普遍开始佩戴口罩。众所周知,现有人脸识别模型在面对遮挡物(如口罩)时,其识别精度会显著下降。这一现象的主要原因在于,现有数据集往往没有充分考虑遮挡因素。

目前,尚未有一个公开的数据集能够全面考虑人脸识别中的遮挡问题。尽管已有一些研究提出了针对遮挡感知的人脸识别模型,包括对面具和太阳镜的识别,但这些研究大多是基于自行构建的数据集。然而,这些自行构建的数据集与现实情况存在较大差异,因此其有效性受到限制。

例如,(a) 展示了2016年报道的MaskNet所使用的数据集样本。该数据集通过随机应用不同尺寸的黑色遮罩来模拟遮挡。然而,这种单一的遮挡类型预计会降低模型的泛化能力。此外,考虑到实际应用场景,这种咬合(遮挡)方式显得并不自然。

(b) 展示了2019年报道的成对差分连体网络(PDSN)所使用的三个数据集样本。这里提供了三种不同的遮挡类型,与(a)相比,遮挡类型的多样性有所增加。但是,从实际应用的角度来看,遮挡的位置和大小仍然不够自然。

© 展示了2020年报告的wID所使用的数据集样本。在这个数据集中,人脸图像被随机应用了方形框作为遮挡。尽管采用了综合方法,但这种方法仍然无法很好地适应实际条件。

近年来,使用生成对抗网络(GANs)的方法受到了广泛关注,因为它们能够生成视觉上更自然的遮挡图像。然而,这些图像在细节信息上的变化可能导致在这些图像上训练的人脸识别模型在实际应用中表现不佳。

因此,尽管目前已有一些考虑遮挡的数据集,但它们大多数与现实情况相去甚远。

为了改善这一状况,本文提出了一个新的公共遮挡感知数据集——Webface-OCC。(d) 展示了Webface-OCC的样本数据。该数据集包含10,575个不同主体的804,704张面部图像,涵盖了各种遮挡类型,有望为人脸识别技术的发展提供更贴近实际的支持。


论文地址:https://arxiv.org/abs/2103.02805
源码地址:https://github.com/Baojin-Huang/Webface-OCC

2. Webface-OCC

Webface-OCC是基于广泛使用的CASIA-Webface人脸识别数据集构建的。CASIA-Webface数据集包含了轻微遮挡的人脸图像,使得在该数据集上训练的人脸识别模型在小遮挡情况下表现出色。

为了进一步提升模型在遮挡条件下的表现,我们对CASIA-Webface进行了增强,创建了全新的Webface-OCC数据集。这一改进对于提高模型在面对遮挡时的人脸识别性能具有显著帮助。

以下是Webface-OCC数据集的示例。与以往使用方块随机遮挡人脸的方法不同,我们在Webface-OCC中采用了口罩和太阳镜等更符合实际情境的遮挡物,这些是人们在日常生活中经常遇到的。

Webface-OCC提供了多种类型的(a)纹理/颜色和(b)口罩/太阳镜,具体如下所示。然后,我们从未经遮挡的正常图像中提取了面部特征点。

接下来,利用这些面部特征点,我们通过精确地将口罩映射到覆盖口鼻区域,将太阳镜映射到覆盖眼睛区域,并调整它们的角度和大小,生成了一系列带有遮挡的人脸图像。

通过这种方式,我们增加了数据集的多样性,使得数据集包含了多种遮挡类型的组合。最终,Webface-OCC数据集包含了10,575个不同个体的804,704张人脸图像。
此外,数据集中每个ID都包含了正常和遮挡状态下的人脸图像,且两者数量相等,如下所示。

3.测试实验

Webface-OCC训练的模型在两种不同情境下进行了评估:

  1. 一般人脸识别:使用了Labeled Faces in the Wild (LFW)、Celebrity Frontal-Profile in the Wild (CFP-FP) 和 AgeDB-30 数据集进行评估。
  2. 遮挡人脸识别:使用了最新提出的LFW-mask、CFP-FP-mask、AgeDB-30-mask 和 Real-World Masked Face Dataset (RMFRD) 进行评估。

LFW-mask、CFP-FP-mask 和 AgeDB-30-mask 是在原始数据集的基础上添加了遮挡物,这些数据集在图像数量和比例上与原始数据集保持一致,没有变化。

评估所用的模型基于六种具有代表性的人脸识别架构:CenterFace、SphereFace、FaceNet、CosFace、ArcFace 和 MaskNet。特别地,FaceNet 和 ArcFace 还在 WiderFace 数据集上进行了重新训练,以进一步验证其性能。

评估结果显示,由于人脸方向和年龄差异的影响,CFP-FP 和 AgeDB-30 的准确率显著低于 LFW。然而,使用 Webface-OCC 训练的模型与原始模型相比,准确率仅下降了大约 1%,表明这些模型在一般人脸识别数据集上的整体表现仍然较高。

模型性能比较图

此外,重新训练的模型(特别是 FaceNet 和 ArcFace)在性能上明显优于原始模型。例如,ArcFace 在四个遮挡人脸识别数据集(LFW-mask、CFP-FP-mask、AgeDB-30-mask 和 RMFRD)上的准确率比原始模型分别提高了 36.22%、29.14%、27.04% 和 15.03%。

换言之,重新训练的模型在显著提升对遮挡人脸识别数据集的性能的同时,保持了对一般人脸识别数据集的高准确率。

与模拟遮挡的人脸识别数据集(LFW-mask、CFP-FP-FP-mask 和 AgeDB-30-mask)相比,真实遮挡的人脸识别数据集(RMFRD)的识别精度较低。这可能是由于 RMFRD 中遮挡物的未知性,或者是因为被试者是公众人物,他们可能会故意伪装,以隐藏自己的身份。

4.总结

本文介绍了一个新的公共数据集,专为闭塞感知人脸识别而设计。与传统的合成遮挡方法相比,我们采用了一种创新的面部特征点映射技术来合成遮挡物,这种方法更贴近现实世界的应用场景。我们提出了一种综合的遮挡合成方法,它能够更真实地模拟实际中的遮挡情况。

通过将此方法应用于现有的Webface数据集,我们成功构建了一个包含大规模遮挡图像的公共数据集。此外,我们在该数据集上对ArcFace模型进行了重新训练,结果表明,重新训练后的模型在LFW-Mask和RMFRD数据集上分别达到了97.08%和78.25%的高准确率。

据NIST等多个国际权威机构的报告,传统人脸识别模型在口罩遮挡下的准确率会有显著下降。我们预计,Webface-OCC的推出将为人脸识别领域带来一个规模更大、更多样化、更精确的遮挡人脸识别数据集,从而显著提升人脸识别模型的准确性。

这篇关于人脸识别——Webface-OCC遮挡人脸识别算法解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1012243

相关文章

在C#中合并和解析相对路径方式

《在C#中合并和解析相对路径方式》Path类提供了几个用于操作文件路径的静态方法,其中包括Combine方法和GetFullPath方法,Combine方法将两个路径合并在一起,但不会解析包含相对元素... 目录C#合并和解析相对路径System.IO.Path类幸运的是总结C#合并和解析相对路径对于 C

Java解析JSON的六种方案

《Java解析JSON的六种方案》这篇文章介绍了6种JSON解析方案,包括Jackson、Gson、FastJSON、JsonPath、、手动解析,分别阐述了它们的功能特点、代码示例、高级功能、优缺点... 目录前言1. 使用 Jackson:业界标配功能特点代码示例高级功能优缺点2. 使用 Gson:轻量

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

python解析HTML并提取span标签中的文本

《python解析HTML并提取span标签中的文本》在网页开发和数据抓取过程中,我们经常需要从HTML页面中提取信息,尤其是span元素中的文本,span标签是一个行内元素,通常用于包装一小段文本或... 目录一、安装相关依赖二、html 页面结构三、使用 BeautifulSoup javascript

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig