【机器学习300问】103、简单的经典卷积神经网络结构设计成什么样?以LeNet-5为例说明。

本文主要是介绍【机器学习300问】103、简单的经典卷积神经网络结构设计成什么样?以LeNet-5为例说明。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        一个简单的经典CNN网络结构由:输入层、卷积层、池化层、全连接层和输出层,这五种神经网络层结构组成。它最最经典的实例是LeNet-5,它最早被设计用于手写数字识别任务,包含两个卷积层、两个池化层、几个全连接层,以及最后的输出层。

一、先用文字介绍一下这五层分别在做什么

(1)输入层

        输入通常是经过预处理的图像数据,例如,将图像调整到特定尺寸(如32x32x3)并进行归一化,使得像素值范围在0到1之间,或者被标准化为均值为0,标准差为1的形式。

(2)卷积层

        卷积层是CNN的关键组成部分,又可以拆分成下面4分部分逐一理解:

  • 卷积核(Filter/Kernels):每个卷积层包含多个可学习的滤波器(或称为卷积核),这些滤波器在输入图像上滑动,执行卷积操作(相乘后求和),从而检测图像中的特定特征,如边缘、线条、纹理等。
  • 步长(Stride):滤波器在图像上移动的步长,决定了输出特征图的空间分辨率。
  • 填充(Padding):通常为了保持输出特征图的尺寸或避免边界信息的丢失,会在图像边缘添加零(Zero Padding)。
  • 激活函数:如ReLU(Rectified Linear Unit)用于增加网络的非线性。

(3)池化层

        池化层的负责减少特征图的空间尺寸,降低计算复杂度,同时保持最重要的特征。最常见的池化类型是最大池化(Max Pooling),它在每个池化区域取最大值作为输出。池化同样有步长和大小的参数,比如常用的2x2大小,步长为2。

(4)全连接层

        在一系列卷积和池化层之后,特征图会被展平(Flatten)成一维向量,然后传递给全连接层。全连接层负责将学到的特征映射到分类标签或其他输出形式。全连接层是传统神经网络的一部分,常用于模型的最终分类或回归任务。

(5)输出层

        对于分类任务,输出层通常使用Softmax激活函数,将神经元的输出转换为概率分布,表示每个类别的预测概率。输出层的神经元数量等于分类任务的类别总数。

二、再用可视化加深对经典CNN结构的理解

(1)经典CNN结构 

LeNet-5网络结构图(英文)

        CNN有个特点,5个层组成(输入层、卷积层、池化层、全连接层和输出层),在神经网络的隐藏层部分,卷积层和池化层交替出现,最后跟上几个全连接层再跟输出层。

        重复的卷积层与池化层的组合目的是为了学习更深层次、更复杂的特征,每次这样的组合都会使网络能够捕捉到更高层次的抽象特征,如从边缘逐步过渡到形状、纹理乃至对象的部分和整体。

LeNet-5网络结构图(中文)

(2)这样的网络结构设计会出现一种现象

        经过这样的网络结构后,图像的尺寸(n_H,n_W)会减小,图像的通道数n_C会增大。 这种变化反映了网络从原始像素数据中提取并逐步构建更高级、更抽象特征的过程。对此现象稍作解释:

① 图像尺寸减小

  • 卷积层:卷积层本身不一定会减少图像尺寸,但可以通过设置合适的填充(padding)和步长(stride)来控制输出尺寸。无填充且步长大于1的卷积会缩小输出尺寸。
  • 池化层:池化层的主要作用之一就是减少空间维度(高度和宽度),通常在每个维度上减半,从而显著减小图像尺寸,同时保持最重要的特征。

② 通道数增大

  • 卷积层:每个卷积层通过不同的卷积核学习不同的特征,每个卷积核会产生一个新的通道。因此,卷积层后的通道数通常会增加,具体增加的数量等于该层中滤波器(卷积核)的数量。
  • 池化层:池化操作不会改变通道数,它只影响空间维度。
  • 全连接层:进入全连接层之前,所有之前的层(包括卷积层和池化层)的输出会被“展平”成一维向量,此时不再讨论“通道”这个概念,而是关注于神经元的总数。

这篇关于【机器学习300问】103、简单的经典卷积神经网络结构设计成什么样?以LeNet-5为例说明。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1011858

相关文章

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

使用IntelliJ IDEA创建简单的Java Web项目完整步骤

《使用IntelliJIDEA创建简单的JavaWeb项目完整步骤》:本文主要介绍如何使用IntelliJIDEA创建一个简单的JavaWeb项目,实现登录、注册和查看用户列表功能,使用Se... 目录前置准备项目功能实现步骤1. 创建项目2. 配置 Tomcat3. 项目文件结构4. 创建数据库和表5.

使用PyQt5编写一个简单的取色器

《使用PyQt5编写一个简单的取色器》:本文主要介绍PyQt5搭建的一个取色器,一共写了两款应用,一款使用快捷键捕获鼠标附近图像的RGB和16进制颜色编码,一款跟随鼠标刷新图像的RGB和16... 目录取色器1取色器2PyQt5搭建的一个取色器,一共写了两款应用,一款使用快捷键捕获鼠标附近图像的RGB和16

四种简单方法 轻松进入电脑主板 BIOS 或 UEFI 固件设置

《四种简单方法轻松进入电脑主板BIOS或UEFI固件设置》设置BIOS/UEFI是计算机维护和管理中的一项重要任务,它允许用户配置计算机的启动选项、硬件设置和其他关键参数,该怎么进入呢?下面... 随着计算机技术的发展,大多数主流 PC 和笔记本已经从传统 BIOS 转向了 UEFI 固件。很多时候,我们也

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要

Redis分布式锁使用及说明

《Redis分布式锁使用及说明》本文总结了Redis和Zookeeper在高可用性和高一致性场景下的应用,并详细介绍了Redis的分布式锁实现方式,包括使用Lua脚本和续期机制,最后,提到了RedLo... 目录Redis分布式锁加锁方式怎么会解错锁?举个小案例吧解锁方式续期总结Redis分布式锁如果追求

结构体和联合体的区别及说明

《结构体和联合体的区别及说明》文章主要介绍了C语言中的结构体和联合体,结构体是一种自定义的复合数据类型,可以包含多个成员,每个成员可以是不同的数据类型,联合体是一种特殊的数据结构,可以在内存中共享同一... 目录结构体和联合体的区别1. 结构体(Struct)2. 联合体(Union)3. 联合体与结构体的

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核