代码随想录算法训练营day21|530.二叉搜索树的最小绝对值差、501.二叉搜索树中的众数、236.二叉树的最近公共祖先

本文主要是介绍代码随想录算法训练营day21|530.二叉搜索树的最小绝对值差、501.二叉搜索树中的众数、236.二叉树的最近公共祖先,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

二叉搜索树的最小绝对值差

递归法        

        首先需考虑这是一个二叉搜索树,在中序遍历后的结果为从小到大的一个序列,寻找二叉搜索树的最小绝对值差,只需比较一个节点与之后的差值即可。在遍历的过程中,我们需要一个节点保存前节点,之后计算前节点和当前节点的差值,将所有节点都遍历一遍后即可得到二叉搜索树的最小绝对值差。

class Solution {
public:// 用于存储最小差值的变量,初始值设为最大整数,以便后续比较int minDiff = INT_MAX;// 用于记录前一个节点的指针,初始值为nullptrTreeNode *pre = nullptr;// 中序遍历二叉树的递归函数void inorder_traversal(TreeNode* root, TreeNode*& pre, int& minDiff) {// 如果当前节点为空,则返回if(root == nullptr){return;}// 首先递归遍历左子树inorder_traversal(root->left, pre, minDiff);// 如果前一个节点不为空,则计算当前节点和前一个节点的差值,并更新最小差值if(pre != nullptr){minDiff = std::min(minDiff, root->val - pre->val);}// 将当前节点设置为前一个节点,以便下一次比较pre = root;// 最后递归遍历右子树inorder_traversal(root->right, pre, minDiff);}// 主函数,调用中序遍历函数并返回最小差值int getMinimumDifference(TreeNode* root) {TreeNode* pre = nullptr; // 前一个节点的指针int minDiff = INT_MAX;  // 最小差值// 调用中序遍历函数inorder_traversal(root, pre, minDiff);// 返回最小差值return minDiff;}
};

算法的时间复杂度和空间复杂度为O(n)。

二叉搜索树中的众数

递归+哈希表

        由于要遍历所有的节点,最简单的方法,创建一个哈希表,将所有的节点出现次数加入哈希表,最后将哈希表中出现次数最多的数全部返回。

class Solution {
public://前序遍历void preorder_traversal(TreeNode* root, unordered_map<int, int>& umap) {if (root == nullptr) {return;}umap[root->val] += 1; // 统计当前节点值的出现次数preorder_traversal(root->left, umap); preorder_traversal(root->right, umap);}vector<int> findMode(TreeNode* root) {int max_value = 0; // 用于存储最大出现次数vector<int> ans; // 用于存储众数unordered_map<int, int> umap; // 用于存储每个值及其出现次数preorder_traversal(root, umap); // 调用前序遍历函数// 遍历哈希表,找到出现次数最多的值for (const auto& pair : umap) {if (pair.second > max_value) {max_value = pair.second; // 更新最大出现次数ans.clear(); // 清空之前的众数ans.push_back(pair.first); // 添加新的众数} else if (pair.second == max_value) {ans.push_back(pair.first); // 如果有多个出现次数相同的值,都添加到众数列表中}}return ans; // 返回众数列表}
};

分析代码的时间复杂度和空间复杂度。

在时间复杂度上,遍历树的每一节点,时间复杂度为O(n),此外,在寻找众数时,需要遍历哈希表,同样需要O(n),综上,时间复杂度为O(n)。

空间复杂度,哈希表存储了树中所有不同值的出现次数,最差情况为O(n),此外,递归调用栈的空间复杂度为O(H),H为树的高度,最差情况下为O(n)。因此最终时间复杂度和空间复杂度均为O(n)。

双指针

二叉搜索树,一定得是中序遍历,中序遍历结果的序列才是有序的。

定义一个全局变量max_count,一个count,在函数体创建一个ans数组,在中序遍历时,参考上题,设定一个pre指针,指向当前的前一个位置,当现在位置的val与pre->val相同时,count++,遍历第一次的count更新max_count,并将值加入ans数组,之后的遍历结果若count大于max_count,则更新max_count,并将ans数组清空,并将val值存入数组,若count等于max_count,则在ans数组中加入val。遍历一次之后即能得到所有众数。

class Solution {
public:int max_count = 0;int count = 1;TreeNode*pre = nullptr;void inorder_traversal(TreeNode* root,vector<int>&ans){if(root == nullptr){return;}inorder_traversal(root->left,ans);if(pre != nullptr){if(root->val == pre->val){count++;}else{count = 1;}}if(count > max_count){max_count = count;ans.clear();ans.push_back(root->val);}else if(count == max_count){ans.push_back(root->val);}pre = root;inorder_traversal(root->right,ans);}vector<int> findMode(TreeNode* root) {vector<int>ans;inorder_traversal(root,ans);return ans;}
};

算法的时间复杂度和空间复杂度均为O(n)。

二叉树的最近公共祖先

递归法

由于是要寻找最近的公共祖先,我们得考虑从叶子节点向上递归,因此考虑后序遍历的方式,左右中,从底部向上找。

具体参考代码随想录讲解视频。

自底向上查找,有点难度! | LeetCode:236. 二叉树的最近公共祖先_哔哩哔哩_bilibiliicon-default.png?t=N7T8https://www.bilibili.com/video/BV1jd4y1B7E2/?spm_id_from=333.788&vd_source=fc4a6e70e3a87b7ea67c2024e326e7c5

class Solution {
public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {// 如果当前节点为空,或者等于p或q,直接返回当前节点if (root == nullptr || root == p || root == q) {return root;}// 在左右子树中递归寻找p和qTreeNode* left = lowestCommonAncestor(root->left, p, q);TreeNode* right = lowestCommonAncestor(root->right, p, q);// 如果左右子树的返回值都不为空,说明当前节点就是最近公共祖先if (left != nullptr && right != nullptr) {return root;}// 否则,返回非空的子树返回值return left != nullptr ? left : right;}
};

算法的时间复杂度和空间复杂度均为O(n)

这篇关于代码随想录算法训练营day21|530.二叉搜索树的最小绝对值差、501.二叉搜索树中的众数、236.二叉树的最近公共祖先的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1011683

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.