“揭秘:为什么羊驼Ollama成为计算机运行大型语言模型的最佳拍档?“

本文主要是介绍“揭秘:为什么羊驼Ollama成为计算机运行大型语言模型的最佳拍档?“,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近,AIM 评测了在计算机上本地运行大语言模型(LLM)的最佳工具,Ollama 脱颖而出,成为最高效的解决方案,提供了无与伦比的灵活性。Ollama 是 Jeffrey Morgan 开发的一款开源工具,它正在彻底改变爱好者在本地终端上运行大语言模型的方式。

Ollama 具有友好的用户界面,并与 LLaMA 2 和 Mistral 等流行模型兼容,希望安全、经济、高效地进行大语言模型实验的用户可以轻松考虑使用 Ollama。它能让用户利用先进人工智能模型的力量,而无需依赖云服务或昂贵的硬件。

AIM 通过在 Linux (Pop!_OS)、macOS 和 Windows 等多个操作系统上运行多个大语言模型对 Ollama 进行了测试,以便让读者全面了解这款实用工具。

Ollama:在本地快速运行大语言模型的工具

图片奥拉马运行猎鹰 2 号

虽然它是在终端上本地运行大语言模型的最快解决方案,但如果你不习惯这样做,也可以使用图形用户界面,但它需要一些额外的步骤(大多数基本用户都希望避免这些步骤)。

Ollama 可以直接从其库中获取大量大语言模型,只需执行一条命令即可下载。下载完成后,只需执行一条命令即可开始使用。这对那些工作负荷主要围绕终端窗口的用户很有帮助。如果他们在某个地方卡住了,无需切换到另一个浏览器窗口就能得到答案。

在 Linux 上使用 Ollama 时,我们发现其开发人员采用了一种令人惊讶的方法。当你执行安装脚本时,它会自行处理所有 GPU 驱动程序,无需额外步骤。

另一方面,我们发现 macOS 的安装程序是三个平台中最精致的,因为它非常易于浏览和使用。当然,你最终必须切换到终端,但它带你进入终端的方式非常流畅。

不过,如果你想通过图形用户界面使用 Ollama,可以使用 Open Web UI。但它只能通过 Docker 容器安装,这对于不熟悉容器概念的用户来说可能会很麻烦。

图片

AIM 指出,Ollama 唯一的缺点是没有提供官方文档,说明如何使用已经下载的大语言模型。

模型最重要

最肯定的是,使用像 Ollama 这样的最小实用工具在本地运行大语言模型,会让你比其他工具更有优势,但归根结底,你使用的是什么模型最重要。

例如,我们在 Ollama 上并排使用了 Llama 2 和 Llama 3,结果让我们大吃一惊。

图片在 Ollama 中运行 llama2 和 llama3

正如您所看到的,Llama 2 在几秒钟内就开始回答我们的问题,而 LLaMA 3 则花了很长时间,但却针对给定的标准给出了令人信服的详细答案。我们在多个实用工具上测试了 LLaMA 2,但 Llama + 终端给出的结果最快,因此我们得出结论:在终端中使用时,Ollama 的速度最快。

此外,如果你尝试加载一个超出你的规格所能承受的非常大的模型,就像其他工具一样,Ollama 将无法加载给定的模型。更可悲的是,它甚至不会通知你 Ollama 已经停止加载模型。

解决这个问题的唯一办法就是密切关注系统资源。当你看到资源消耗突然下降时,说明 Ollama 加载模型失败,你可以停止整个过程(否则会无休止地显示加载动画)。

图片

总之,我们发现 Ollama 灵活而快速。它既能让你使用图形用户界面,又能在终端中快速响应,可谓一举两得。不过,如果你想使用一些简单的工具,我们很快就会向你介绍 Jan,这是一款能让你在本地运行大语言模型的工具,可以让你事半功倍。

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

这篇关于“揭秘:为什么羊驼Ollama成为计算机运行大型语言模型的最佳拍档?“的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1011331

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

Ollama整合open-webui的步骤及访问

《Ollama整合open-webui的步骤及访问》:本文主要介绍如何通过源码方式安装OpenWebUI,并详细说明了安装步骤、环境要求以及第一次使用时的账号注册和模型选择过程,需要的朋友可以参考... 目录安装环境要求步骤访问选择PjrIUE模型开始对话总结 安装官方安装地址:https://docs.

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee