YOLOV8逐步分解(5)_模型训练初始设置之混合精度训练AMP

2024-05-28 00:20

本文主要是介绍YOLOV8逐步分解(5)_模型训练初始设置之混合精度训练AMP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

yolov8逐步分解(1)--默认参数&超参配置文件加载

yolov8逐步分解(2)_DetectionTrainer类初始化过程

yolov8逐步分解(3)_trainer训练之模型加载_yolov8 加载模型-CSDN博客

YOLOV8逐步分解(4)_模型的构建过程

        在上述文章逐步分解(3)和(4)中主要讲解了模型训练初始设置中self.setup_model()函数模型的加载及构建过程,本章将讲解混合精度训练AMP的相关代码。

        下面是_setup_train()函数的详细代码。

def _setup_train(self, world_size):""" Builds dataloaders and optimizer on correct rank process.   """# Modelself.run_callbacks('on_pretrain_routine_start')ckpt = self.setup_model()#加载模型self.model = self.model.to(self.device)self.set_model_attributes()# Check AMPself.amp = torch.tensor(self.args.amp).to(self.device)  # True or Falseif self.amp and RANK in (-1, 0):  callbacks_backup = callbacks.default_callbacks.copy()  # backup callbacks as check_amp() resets themself.amp = torch.tensor(check_amp(self.model), device=self.device) #使用 check_amp 函数检查模型是否支持混合精度callbacks.default_callbacks = callbacks_backup  # restore callbacks, 恢复回之前备份的回调函数if RANK > -1 and world_size > 1:  # DDP 使用 dist.broadcast 将 self.amp 张量从rank 0广播到其他所有rank(返回None)。dist.broadcast(self.amp, src=0)  # broadcast the tensor from rank 0 to all other ranks (returns None)self.amp = bool(self.amp)  # as booleanself.scaler = amp.GradScaler(enabled=self.amp) #创建一个 scaler 对象,用于在混合精度训练中缩放梯度if world_size > 1:self.model = DDP(self.model, device_ids=[RANK])# Check imgszgs = max(int(self.model.stride.max() if hasattr(self.model, 'stride') else 32), 32)  # grid size (max stride)self.args.imgsz = check_imgsz(self.args.imgsz, stride=gs, floor=gs, max_dim=1)# Batch sizeif self.batch_size == -1: #表示批量大小需要自动估计if RANK == -1:  # single-GPU only, estimate best batch sizeself.args.batch = self.batch_size = check_train_batch_size(self.model, self.args.imgsz, self.amp)#估计最佳批量大小else:SyntaxError('batch=-1 to use AutoBatch is only available in Single-GPU training. ''Please pass a valid batch size value for Multi-GPU DDP training, i.e. batch=16')# Dataloadersbatch_size = self.batch_size // max(world_size, 1)self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=RANK, mode='train')#获取训练集if RANK in (-1, 0):self.test_loader = self.get_dataloader(self.testset, batch_size=batch_size * 2, rank=-1, mode='val') #获取测试集self.validator = self.get_validator() #创建验证器(validator),用于评估模型在验证数据集上的性能。metric_keys = self.validator.metrics.keys + self.label_loss_items(prefix='val')self.metrics = dict(zip(metric_keys, [0] * len(metric_keys)))  # TODO: init metrics for plot_results()?self.ema = ModelEMA(self.model)if self.args.plots and not self.args.v5loader: #如果 self.args.plots 为真且 self.args.v5loader 为假self.plot_training_labels() #绘制训练标签的图表# Optimizerself.accumulate = max(round(self.args.nbs / self.batch_size), 1)  # accumulate loss before optimizingweight_decay = self.args.weight_decay * self.batch_size * self.accumulate / self.args.nbs  # scale weight_decayiterations = math.ceil(len(self.train_loader.dataset) / max(self.batch_size, self.args.nbs)) * self.epochsself.optimizer = self.build_optimizer(model=self.model,name=self.args.optimizer,lr=self.args.lr0,momentum=self.args.momentum,decay=weight_decay,iterations=iterations)# Schedulerif self.args.cos_lr:self.lf = one_cycle(1, self.args.lrf, self.epochs)  # cosine 1->hyp['lrf']else:self.lf = lambda x: (1 - x / self.epochs) * (1.0 - self.args.lrf) + self.args.lrf  # linearself.scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=self.lf)self.stopper, self.stop = EarlyStopping(patience=self.args.patience), Falseself.resume_training(ckpt) #恢复训练过程。ckpt 是一个检查点文件,用于加载之前保存的模型和训练状态。self.scheduler.last_epoch = self.start_epoch - 1  # do not moveself.run_callbacks('on_pretrain_routine_end') #运行预训练过程结束时的回调函数。

1. setup_model()的代码讲解

前面已经讲解了self.setup_model()的代码,这里再简单介绍一下相关代码:

        # Modelself.run_callbacks('on_pretrain_routine_start')ckpt = self.setup_model()#加载模型self.model = self.model.to(self.device)self.set_model_attributes()

1.1 self.run_callbacks('on_pretrain_routine_start'):

这行代码触发了预训练例程开始的回调函数。回调函数是一种允许在训练过程中的特定时间点执行自定义操作的机制。

在这里,可能有一些定制的操作需要在模型预训练开始时执行,比如日志记录、模型参数初始化等。

1.2. ckpt = self.setup_model():

这行代码调用了 self.setup_model() 方法,它负责设置和加载模型。

ckpt 变量可能保存着模型的检查点(checkpoint)信息,例如预训练的权重等,以便后续使用。

1.3. self.model = self.model.to(self.device):

这行代码将模型移动到指定的设备上,通常是 GPU 或 CPU。

这是为了确保模型的计算在正确的硬件设备上进行,以利用硬件加速提高训练效率。

1.4. self.set_model_attributes():

这行代码调用了 self.set_model_attributes() 方法,可能用于设置或更新模型的一些属性。

Yolov8中用于设置属性names。

        这段代码是模型训练流程的初始化阶段。它执行了一些必要的模型加载构建等设置和准备工作,为后续的训练过程做好了准备。

2. 混合精度训练MAP代码讲解

        # Check AMPself.amp = torch.tensor(self.args.amp).to(self.device)  # True or Falseif self.amp and RANK in (-1, 0):  callbacks_backup = callbacks.default_callbacks.copy()  # backup callbacks as check_amp() resets themself.amp = torch.tensor(check_amp(self.model), device=self.device) #使用 check_amp 函数检查模型是否支持混合精度callbacks.default_callbacks = callbacks_backup  # restore callbacks, 恢复回之前备份的回调函数if RANK > -1 and world_size > 1:  # DDP 使用 dist.broadcast 将 self.amp 张量从rank 0广播到其他所有rank(返回None)。dist.broadcast(self.amp, src=0)  # broadcast the tensor from rank 0 to all other ranks (returns None)self.amp = bool(self.amp)  # as booleanself.scaler = amp.GradScaler(enabled=self.amp) #创建一个 scaler 对象,用于在混合精度训练中缩放梯度if world_size > 1:self.model = DDP(self.model, device_ids=[RANK])

上述代码是处理模型的混合精度训练(Automatic Mixed Precision, AMP),可以参考文章深度学习之混合精度训练AMP介绍。下面逐步解释一下它的代码:

2.1 self.amp = torch.tensor(self.args.amp).to(self.device):

        这行代码将用户传入的 self.args.amp 参数(True或False)转换为一个 PyTorch 张量,并将其移动到指定的设备上。

        这个 self.amp 张量将用于决定是否启用混合精度训练。

2.2 if self.amp and RANK in (-1, 0)::

        这个条件检查是否启用了混合精度训练,并且当前进程的 rank 为 -1 或 0。

        rank 为 -1 通常表示单机训练,rank 0 表示分布式训练中的主进程。

2.3 self.amp = torch.tensor(check_amp(self.model), device=self.device):

        这行代码使用 check_amp() 函数检查模型是否支持混合精度训练。

        检查结果被存储在 self.amp 张量中。

2.4 callbacks.default_callbacks = callbacks_backup:

        在调用 check_amp() 之前,代码先备份了默认的回调函数列表。

        这是因为 check_amp() 可能会重置回调函数,所以需要在检查完成后将其恢复。

2.5 if RANK > -1 and world_size > 1:

        如果当前处于分布式训练模式(RANK > -1 且 world_size > 1),则使用 dist.broadcast() 将 self.amp 张量从 rank 0 广播到所有其他rank。

        这确保了所有进程使用相同的 self.amp 值。

2.6 self.amp = bool(self.amp):

        将 self.amp 从张量转换为布尔值,方便后续使用。

2.7 self.scaler = amp.GradScaler(enabled=self.amp):

        创建一个 GradScaler 对象,用于在启用混合精度训练时缩放梯度。

2.8  self.model = DDP(self.model, device_ids=[RANK]):

        如果是分布式训练,则将模型包装成 DistributedDataParallel (DDP)模型,以支持分布式训练。

        这段代码的主要目的是检查模型是否支持混合精度训练,并根据检查结果设置相应的配置。这有助于提高训练效率和性能。

这篇关于YOLOV8逐步分解(5)_模型训练初始设置之混合精度训练AMP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1009015

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Spring MVC如何设置响应

《SpringMVC如何设置响应》本文介绍了如何在Spring框架中设置响应,并通过不同的注解返回静态页面、HTML片段和JSON数据,此外,还讲解了如何设置响应的状态码和Header... 目录1. 返回静态页面1.1 Spring 默认扫描路径1.2 @RestController2. 返回 html2

四种简单方法 轻松进入电脑主板 BIOS 或 UEFI 固件设置

《四种简单方法轻松进入电脑主板BIOS或UEFI固件设置》设置BIOS/UEFI是计算机维护和管理中的一项重要任务,它允许用户配置计算机的启动选项、硬件设置和其他关键参数,该怎么进入呢?下面... 随着计算机技术的发展,大多数主流 PC 和笔记本已经从传统 BIOS 转向了 UEFI 固件。很多时候,我们也

Linux中chmod权限设置方式

《Linux中chmod权限设置方式》本文介绍了Linux系统中文件和目录权限的设置方法,包括chmod、chown和chgrp命令的使用,以及权限模式和符号模式的详细说明,通过这些命令,用户可以灵活... 目录设置基本权限命令:chmod1、权限介绍2、chmod命令常见用法和示例3、文件权限详解4、ch

SpringBoot项目引入token设置方式

《SpringBoot项目引入token设置方式》本文详细介绍了JWT(JSONWebToken)的基本概念、结构、应用场景以及工作原理,通过动手实践,展示了如何在SpringBoot项目中实现JWT... 目录一. 先了解熟悉JWT(jsON Web Token)1. JSON Web Token是什么鬼

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

使用Spring Cache时设置缓存键的注意事项详解

《使用SpringCache时设置缓存键的注意事项详解》在现代的Web应用中,缓存是提高系统性能和响应速度的重要手段之一,Spring框架提供了强大的缓存支持,通过​​@Cacheable​​、​​... 目录引言1. 缓存键的基本概念2. 默认缓存键生成器3. 自定义缓存键3.1 使用​​@Cacheab

java如何调用kettle设置变量和参数

《java如何调用kettle设置变量和参数》文章简要介绍了如何在Java中调用Kettle,并重点讨论了变量和参数的区别,以及在Java代码中如何正确设置和使用这些变量,避免覆盖Kettle中已设置... 目录Java调用kettle设置变量和参数java代码中变量会覆盖kettle里面设置的变量总结ja

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G