YOLOV8逐步分解(5)_模型训练初始设置之混合精度训练AMP

2024-05-28 00:20

本文主要是介绍YOLOV8逐步分解(5)_模型训练初始设置之混合精度训练AMP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

yolov8逐步分解(1)--默认参数&超参配置文件加载

yolov8逐步分解(2)_DetectionTrainer类初始化过程

yolov8逐步分解(3)_trainer训练之模型加载_yolov8 加载模型-CSDN博客

YOLOV8逐步分解(4)_模型的构建过程

        在上述文章逐步分解(3)和(4)中主要讲解了模型训练初始设置中self.setup_model()函数模型的加载及构建过程,本章将讲解混合精度训练AMP的相关代码。

        下面是_setup_train()函数的详细代码。

def _setup_train(self, world_size):""" Builds dataloaders and optimizer on correct rank process.   """# Modelself.run_callbacks('on_pretrain_routine_start')ckpt = self.setup_model()#加载模型self.model = self.model.to(self.device)self.set_model_attributes()# Check AMPself.amp = torch.tensor(self.args.amp).to(self.device)  # True or Falseif self.amp and RANK in (-1, 0):  callbacks_backup = callbacks.default_callbacks.copy()  # backup callbacks as check_amp() resets themself.amp = torch.tensor(check_amp(self.model), device=self.device) #使用 check_amp 函数检查模型是否支持混合精度callbacks.default_callbacks = callbacks_backup  # restore callbacks, 恢复回之前备份的回调函数if RANK > -1 and world_size > 1:  # DDP 使用 dist.broadcast 将 self.amp 张量从rank 0广播到其他所有rank(返回None)。dist.broadcast(self.amp, src=0)  # broadcast the tensor from rank 0 to all other ranks (returns None)self.amp = bool(self.amp)  # as booleanself.scaler = amp.GradScaler(enabled=self.amp) #创建一个 scaler 对象,用于在混合精度训练中缩放梯度if world_size > 1:self.model = DDP(self.model, device_ids=[RANK])# Check imgszgs = max(int(self.model.stride.max() if hasattr(self.model, 'stride') else 32), 32)  # grid size (max stride)self.args.imgsz = check_imgsz(self.args.imgsz, stride=gs, floor=gs, max_dim=1)# Batch sizeif self.batch_size == -1: #表示批量大小需要自动估计if RANK == -1:  # single-GPU only, estimate best batch sizeself.args.batch = self.batch_size = check_train_batch_size(self.model, self.args.imgsz, self.amp)#估计最佳批量大小else:SyntaxError('batch=-1 to use AutoBatch is only available in Single-GPU training. ''Please pass a valid batch size value for Multi-GPU DDP training, i.e. batch=16')# Dataloadersbatch_size = self.batch_size // max(world_size, 1)self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=RANK, mode='train')#获取训练集if RANK in (-1, 0):self.test_loader = self.get_dataloader(self.testset, batch_size=batch_size * 2, rank=-1, mode='val') #获取测试集self.validator = self.get_validator() #创建验证器(validator),用于评估模型在验证数据集上的性能。metric_keys = self.validator.metrics.keys + self.label_loss_items(prefix='val')self.metrics = dict(zip(metric_keys, [0] * len(metric_keys)))  # TODO: init metrics for plot_results()?self.ema = ModelEMA(self.model)if self.args.plots and not self.args.v5loader: #如果 self.args.plots 为真且 self.args.v5loader 为假self.plot_training_labels() #绘制训练标签的图表# Optimizerself.accumulate = max(round(self.args.nbs / self.batch_size), 1)  # accumulate loss before optimizingweight_decay = self.args.weight_decay * self.batch_size * self.accumulate / self.args.nbs  # scale weight_decayiterations = math.ceil(len(self.train_loader.dataset) / max(self.batch_size, self.args.nbs)) * self.epochsself.optimizer = self.build_optimizer(model=self.model,name=self.args.optimizer,lr=self.args.lr0,momentum=self.args.momentum,decay=weight_decay,iterations=iterations)# Schedulerif self.args.cos_lr:self.lf = one_cycle(1, self.args.lrf, self.epochs)  # cosine 1->hyp['lrf']else:self.lf = lambda x: (1 - x / self.epochs) * (1.0 - self.args.lrf) + self.args.lrf  # linearself.scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=self.lf)self.stopper, self.stop = EarlyStopping(patience=self.args.patience), Falseself.resume_training(ckpt) #恢复训练过程。ckpt 是一个检查点文件,用于加载之前保存的模型和训练状态。self.scheduler.last_epoch = self.start_epoch - 1  # do not moveself.run_callbacks('on_pretrain_routine_end') #运行预训练过程结束时的回调函数。

1. setup_model()的代码讲解

前面已经讲解了self.setup_model()的代码,这里再简单介绍一下相关代码:

        # Modelself.run_callbacks('on_pretrain_routine_start')ckpt = self.setup_model()#加载模型self.model = self.model.to(self.device)self.set_model_attributes()

1.1 self.run_callbacks('on_pretrain_routine_start'):

这行代码触发了预训练例程开始的回调函数。回调函数是一种允许在训练过程中的特定时间点执行自定义操作的机制。

在这里,可能有一些定制的操作需要在模型预训练开始时执行,比如日志记录、模型参数初始化等。

1.2. ckpt = self.setup_model():

这行代码调用了 self.setup_model() 方法,它负责设置和加载模型。

ckpt 变量可能保存着模型的检查点(checkpoint)信息,例如预训练的权重等,以便后续使用。

1.3. self.model = self.model.to(self.device):

这行代码将模型移动到指定的设备上,通常是 GPU 或 CPU。

这是为了确保模型的计算在正确的硬件设备上进行,以利用硬件加速提高训练效率。

1.4. self.set_model_attributes():

这行代码调用了 self.set_model_attributes() 方法,可能用于设置或更新模型的一些属性。

Yolov8中用于设置属性names。

        这段代码是模型训练流程的初始化阶段。它执行了一些必要的模型加载构建等设置和准备工作,为后续的训练过程做好了准备。

2. 混合精度训练MAP代码讲解

        # Check AMPself.amp = torch.tensor(self.args.amp).to(self.device)  # True or Falseif self.amp and RANK in (-1, 0):  callbacks_backup = callbacks.default_callbacks.copy()  # backup callbacks as check_amp() resets themself.amp = torch.tensor(check_amp(self.model), device=self.device) #使用 check_amp 函数检查模型是否支持混合精度callbacks.default_callbacks = callbacks_backup  # restore callbacks, 恢复回之前备份的回调函数if RANK > -1 and world_size > 1:  # DDP 使用 dist.broadcast 将 self.amp 张量从rank 0广播到其他所有rank(返回None)。dist.broadcast(self.amp, src=0)  # broadcast the tensor from rank 0 to all other ranks (returns None)self.amp = bool(self.amp)  # as booleanself.scaler = amp.GradScaler(enabled=self.amp) #创建一个 scaler 对象,用于在混合精度训练中缩放梯度if world_size > 1:self.model = DDP(self.model, device_ids=[RANK])

上述代码是处理模型的混合精度训练(Automatic Mixed Precision, AMP),可以参考文章深度学习之混合精度训练AMP介绍。下面逐步解释一下它的代码:

2.1 self.amp = torch.tensor(self.args.amp).to(self.device):

        这行代码将用户传入的 self.args.amp 参数(True或False)转换为一个 PyTorch 张量,并将其移动到指定的设备上。

        这个 self.amp 张量将用于决定是否启用混合精度训练。

2.2 if self.amp and RANK in (-1, 0)::

        这个条件检查是否启用了混合精度训练,并且当前进程的 rank 为 -1 或 0。

        rank 为 -1 通常表示单机训练,rank 0 表示分布式训练中的主进程。

2.3 self.amp = torch.tensor(check_amp(self.model), device=self.device):

        这行代码使用 check_amp() 函数检查模型是否支持混合精度训练。

        检查结果被存储在 self.amp 张量中。

2.4 callbacks.default_callbacks = callbacks_backup:

        在调用 check_amp() 之前,代码先备份了默认的回调函数列表。

        这是因为 check_amp() 可能会重置回调函数,所以需要在检查完成后将其恢复。

2.5 if RANK > -1 and world_size > 1:

        如果当前处于分布式训练模式(RANK > -1 且 world_size > 1),则使用 dist.broadcast() 将 self.amp 张量从 rank 0 广播到所有其他rank。

        这确保了所有进程使用相同的 self.amp 值。

2.6 self.amp = bool(self.amp):

        将 self.amp 从张量转换为布尔值,方便后续使用。

2.7 self.scaler = amp.GradScaler(enabled=self.amp):

        创建一个 GradScaler 对象,用于在启用混合精度训练时缩放梯度。

2.8  self.model = DDP(self.model, device_ids=[RANK]):

        如果是分布式训练,则将模型包装成 DistributedDataParallel (DDP)模型,以支持分布式训练。

        这段代码的主要目的是检查模型是否支持混合精度训练,并根据检查结果设置相应的配置。这有助于提高训练效率和性能。

这篇关于YOLOV8逐步分解(5)_模型训练初始设置之混合精度训练AMP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1009015

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者