YOLOV8逐步分解(5)_模型训练初始设置之混合精度训练AMP

2024-05-28 00:20

本文主要是介绍YOLOV8逐步分解(5)_模型训练初始设置之混合精度训练AMP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

yolov8逐步分解(1)--默认参数&超参配置文件加载

yolov8逐步分解(2)_DetectionTrainer类初始化过程

yolov8逐步分解(3)_trainer训练之模型加载_yolov8 加载模型-CSDN博客

YOLOV8逐步分解(4)_模型的构建过程

        在上述文章逐步分解(3)和(4)中主要讲解了模型训练初始设置中self.setup_model()函数模型的加载及构建过程,本章将讲解混合精度训练AMP的相关代码。

        下面是_setup_train()函数的详细代码。

def _setup_train(self, world_size):""" Builds dataloaders and optimizer on correct rank process.   """# Modelself.run_callbacks('on_pretrain_routine_start')ckpt = self.setup_model()#加载模型self.model = self.model.to(self.device)self.set_model_attributes()# Check AMPself.amp = torch.tensor(self.args.amp).to(self.device)  # True or Falseif self.amp and RANK in (-1, 0):  callbacks_backup = callbacks.default_callbacks.copy()  # backup callbacks as check_amp() resets themself.amp = torch.tensor(check_amp(self.model), device=self.device) #使用 check_amp 函数检查模型是否支持混合精度callbacks.default_callbacks = callbacks_backup  # restore callbacks, 恢复回之前备份的回调函数if RANK > -1 and world_size > 1:  # DDP 使用 dist.broadcast 将 self.amp 张量从rank 0广播到其他所有rank(返回None)。dist.broadcast(self.amp, src=0)  # broadcast the tensor from rank 0 to all other ranks (returns None)self.amp = bool(self.amp)  # as booleanself.scaler = amp.GradScaler(enabled=self.amp) #创建一个 scaler 对象,用于在混合精度训练中缩放梯度if world_size > 1:self.model = DDP(self.model, device_ids=[RANK])# Check imgszgs = max(int(self.model.stride.max() if hasattr(self.model, 'stride') else 32), 32)  # grid size (max stride)self.args.imgsz = check_imgsz(self.args.imgsz, stride=gs, floor=gs, max_dim=1)# Batch sizeif self.batch_size == -1: #表示批量大小需要自动估计if RANK == -1:  # single-GPU only, estimate best batch sizeself.args.batch = self.batch_size = check_train_batch_size(self.model, self.args.imgsz, self.amp)#估计最佳批量大小else:SyntaxError('batch=-1 to use AutoBatch is only available in Single-GPU training. ''Please pass a valid batch size value for Multi-GPU DDP training, i.e. batch=16')# Dataloadersbatch_size = self.batch_size // max(world_size, 1)self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=RANK, mode='train')#获取训练集if RANK in (-1, 0):self.test_loader = self.get_dataloader(self.testset, batch_size=batch_size * 2, rank=-1, mode='val') #获取测试集self.validator = self.get_validator() #创建验证器(validator),用于评估模型在验证数据集上的性能。metric_keys = self.validator.metrics.keys + self.label_loss_items(prefix='val')self.metrics = dict(zip(metric_keys, [0] * len(metric_keys)))  # TODO: init metrics for plot_results()?self.ema = ModelEMA(self.model)if self.args.plots and not self.args.v5loader: #如果 self.args.plots 为真且 self.args.v5loader 为假self.plot_training_labels() #绘制训练标签的图表# Optimizerself.accumulate = max(round(self.args.nbs / self.batch_size), 1)  # accumulate loss before optimizingweight_decay = self.args.weight_decay * self.batch_size * self.accumulate / self.args.nbs  # scale weight_decayiterations = math.ceil(len(self.train_loader.dataset) / max(self.batch_size, self.args.nbs)) * self.epochsself.optimizer = self.build_optimizer(model=self.model,name=self.args.optimizer,lr=self.args.lr0,momentum=self.args.momentum,decay=weight_decay,iterations=iterations)# Schedulerif self.args.cos_lr:self.lf = one_cycle(1, self.args.lrf, self.epochs)  # cosine 1->hyp['lrf']else:self.lf = lambda x: (1 - x / self.epochs) * (1.0 - self.args.lrf) + self.args.lrf  # linearself.scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=self.lf)self.stopper, self.stop = EarlyStopping(patience=self.args.patience), Falseself.resume_training(ckpt) #恢复训练过程。ckpt 是一个检查点文件,用于加载之前保存的模型和训练状态。self.scheduler.last_epoch = self.start_epoch - 1  # do not moveself.run_callbacks('on_pretrain_routine_end') #运行预训练过程结束时的回调函数。

1. setup_model()的代码讲解

前面已经讲解了self.setup_model()的代码,这里再简单介绍一下相关代码:

        # Modelself.run_callbacks('on_pretrain_routine_start')ckpt = self.setup_model()#加载模型self.model = self.model.to(self.device)self.set_model_attributes()

1.1 self.run_callbacks('on_pretrain_routine_start'):

这行代码触发了预训练例程开始的回调函数。回调函数是一种允许在训练过程中的特定时间点执行自定义操作的机制。

在这里,可能有一些定制的操作需要在模型预训练开始时执行,比如日志记录、模型参数初始化等。

1.2. ckpt = self.setup_model():

这行代码调用了 self.setup_model() 方法,它负责设置和加载模型。

ckpt 变量可能保存着模型的检查点(checkpoint)信息,例如预训练的权重等,以便后续使用。

1.3. self.model = self.model.to(self.device):

这行代码将模型移动到指定的设备上,通常是 GPU 或 CPU。

这是为了确保模型的计算在正确的硬件设备上进行,以利用硬件加速提高训练效率。

1.4. self.set_model_attributes():

这行代码调用了 self.set_model_attributes() 方法,可能用于设置或更新模型的一些属性。

Yolov8中用于设置属性names。

        这段代码是模型训练流程的初始化阶段。它执行了一些必要的模型加载构建等设置和准备工作,为后续的训练过程做好了准备。

2. 混合精度训练MAP代码讲解

        # Check AMPself.amp = torch.tensor(self.args.amp).to(self.device)  # True or Falseif self.amp and RANK in (-1, 0):  callbacks_backup = callbacks.default_callbacks.copy()  # backup callbacks as check_amp() resets themself.amp = torch.tensor(check_amp(self.model), device=self.device) #使用 check_amp 函数检查模型是否支持混合精度callbacks.default_callbacks = callbacks_backup  # restore callbacks, 恢复回之前备份的回调函数if RANK > -1 and world_size > 1:  # DDP 使用 dist.broadcast 将 self.amp 张量从rank 0广播到其他所有rank(返回None)。dist.broadcast(self.amp, src=0)  # broadcast the tensor from rank 0 to all other ranks (returns None)self.amp = bool(self.amp)  # as booleanself.scaler = amp.GradScaler(enabled=self.amp) #创建一个 scaler 对象,用于在混合精度训练中缩放梯度if world_size > 1:self.model = DDP(self.model, device_ids=[RANK])

上述代码是处理模型的混合精度训练(Automatic Mixed Precision, AMP),可以参考文章深度学习之混合精度训练AMP介绍。下面逐步解释一下它的代码:

2.1 self.amp = torch.tensor(self.args.amp).to(self.device):

        这行代码将用户传入的 self.args.amp 参数(True或False)转换为一个 PyTorch 张量,并将其移动到指定的设备上。

        这个 self.amp 张量将用于决定是否启用混合精度训练。

2.2 if self.amp and RANK in (-1, 0)::

        这个条件检查是否启用了混合精度训练,并且当前进程的 rank 为 -1 或 0。

        rank 为 -1 通常表示单机训练,rank 0 表示分布式训练中的主进程。

2.3 self.amp = torch.tensor(check_amp(self.model), device=self.device):

        这行代码使用 check_amp() 函数检查模型是否支持混合精度训练。

        检查结果被存储在 self.amp 张量中。

2.4 callbacks.default_callbacks = callbacks_backup:

        在调用 check_amp() 之前,代码先备份了默认的回调函数列表。

        这是因为 check_amp() 可能会重置回调函数,所以需要在检查完成后将其恢复。

2.5 if RANK > -1 and world_size > 1:

        如果当前处于分布式训练模式(RANK > -1 且 world_size > 1),则使用 dist.broadcast() 将 self.amp 张量从 rank 0 广播到所有其他rank。

        这确保了所有进程使用相同的 self.amp 值。

2.6 self.amp = bool(self.amp):

        将 self.amp 从张量转换为布尔值,方便后续使用。

2.7 self.scaler = amp.GradScaler(enabled=self.amp):

        创建一个 GradScaler 对象,用于在启用混合精度训练时缩放梯度。

2.8  self.model = DDP(self.model, device_ids=[RANK]):

        如果是分布式训练,则将模型包装成 DistributedDataParallel (DDP)模型,以支持分布式训练。

        这段代码的主要目的是检查模型是否支持混合精度训练,并根据检查结果设置相应的配置。这有助于提高训练效率和性能。

这篇关于YOLOV8逐步分解(5)_模型训练初始设置之混合精度训练AMP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1009015

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

PyCharm如何设置新建文件默认为LF换行符

《PyCharm如何设置新建文件默认为LF换行符》:本文主要介绍PyCharm如何设置新建文件默认为LF换行符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录PyCharm设置新建文件默认为LF换行符设置换行符修改换行符总结PyCharm设置新建文件默认为LF

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Linux上设置Ollama服务配置(常用环境变量)

《Linux上设置Ollama服务配置(常用环境变量)》本文主要介绍了Linux上设置Ollama服务配置(常用环境变量),Ollama提供了多种环境变量供配置,如调试模式、模型目录等,下面就来介绍一... 目录在 linux 上设置环境变量配置 OllamPOgxSRJfa手动安装安装特定版本查看日志在

Ubuntu中Nginx虚拟主机设置的项目实践

《Ubuntu中Nginx虚拟主机设置的项目实践》通过配置虚拟主机,可以在同一台服务器上运行多个独立的网站,本文主要介绍了Ubuntu中Nginx虚拟主机设置的项目实践,具有一定的参考价值,感兴趣的可... 目录简介安装 Nginx创建虚拟主机1. 创建网站目录2. 创建默认索引文件3. 配置 Nginx4

如何关闭 Mac 触发角功能或设置修饰键? mac电脑防止误触设置技巧

《如何关闭Mac触发角功能或设置修饰键?mac电脑防止误触设置技巧》从Windows换到iOS大半年来,触发角是我觉得值得吹爆的MacBook效率神器,成为一大说服理由,下面我们就来看看mac电... MAC 的「触发角」功能虽然提高了效率,但过于灵敏也让不少用户感到头疼。特别是在关键时刻,一不小心就可能触

Python中如何控制小数点精度与对齐方式

《Python中如何控制小数点精度与对齐方式》在Python编程中,数据输出格式化是一个常见的需求,尤其是在涉及到小数点精度和对齐方式时,下面小编就来为大家介绍一下如何在Python中实现这些功能吧... 目录一、控制小数点精度1. 使用 round() 函数2. 使用字符串格式化二、控制对齐方式1. 使用

Nginx配置系统服务&设置环境变量方式

《Nginx配置系统服务&设置环境变量方式》本文介绍了如何将Nginx配置为系统服务并设置环境变量,以便更方便地对Nginx进行操作,通过配置系统服务,可以使用系统命令来启动、停止或重新加载Nginx... 目录1.Nginx操作问题2.配置系统服android务3.设置环境变量总结1.Nginx操作问题

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

grom设置全局日志实现执行并打印sql语句

《grom设置全局日志实现执行并打印sql语句》本文主要介绍了grom设置全局日志实现执行并打印sql语句,包括设置日志级别、实现自定义Logger接口以及如何使用GORM的默认logger,通过这些... 目录gorm中的自定义日志gorm中日志的其他操作日志级别Debug自定义 Loggergorm中的