移动云以深度融合之服务,令“大”智慧贯穿云端

2024-05-26 23:28

本文主要是介绍移动云以深度融合之服务,令“大”智慧贯穿云端,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

移动云助力大模型,开拓创新领未来。

云计算——AI模型的推动器。

当前人工智能技术发展的现状和趋势,以及中国在人工智能领域的发展策略和成就。确实,以 ChatGPT 为代表的大型语言模型在自然语言处理、文本生成、对话系统等领域取得了显著的成果,并且正在逐步改变我们的工作和生活方式。
由于政府部门的大力支持和企业的积极投资,人工智能产业得到了迅速发展。大型模型训练和部署需要巨大的计算资源和存储空间,以及相应的技术支持,这对许多企业来说是一个挑战。云计算平台提供了解决这一问题的方案,它允许企业通过按需购买服务的方式来使用计算资源,而无需自行建设和维护昂贵的硬件基础设施。
中国移动云和九天人工智能的合作,展示了中国在人工智能领域的创新和进步。通过构建智能计算基础设施,提供高效的智能化算力服务,中国正在推动从数字化到数智化的转变,这将有助于提升国家的竞争力。
此外,中国还在人工智能的关键技术领域进行突破,比如算网大脑的构建,这将进一步提升人工智能模型的性能和应用效率。通过这些努力,中国有望在未来的人工智能领域继续保持领先地位。
在这里插入图片描述

架构创新,改变云计算服务供给模式

移动云通过推出COCA(Compute on chip Architecture)软硬一体片上计算架构,正在重塑云计算服务供给模式,这一架构的发布标志着移动云在算力服务模式创新方面迈出了重要一步。COCA架构的三大核心单元——GPU、DPU、HPN,结合自研可编程DPU、多元异构智能算力、高性能RDMA网络、Diskless存储架构引擎等技术,旨在构建高效的大模型算力基础设施。这种基础设施能够实现高性能算力集群的横向融合和垂直抽象,统一提供计算、存储、网络、安全、管控能力的硬件卸载加速。

通过COCA架构,移动云计划加速算力基础设施的建设,并为目标用户提供一体化的算力服务,这些服务将具有“融合、智能、无感、极简”的特点。这种服务模式不仅提供了强大的计算能力,还通过硬件卸载加速减少了资源浪费,提高了效率,使得用户能够更加专注于自己的业务需求,而不是基础的计算资源管理。这一创新有望在云计算领域引发新的变革,为企业和开发者提供更加高效、智能的算力支持。
对此感兴趣的伙伴可以尝试体验一下,下面将介绍如何在移动云上简单部署大模型。
在这里插入图片描述

移动云上部署大模型ChatGLM3-6b

前言

通过移动云,大语言模型可以在移动设备上得到更好的应用和发展。在部署后可以完全本地运行,后面将介绍移动云部署大模型的实际应用,介绍怎么通过移动云上在 Linux 服务器上部署 ChatGLM3 服务,并通过多种方式使用本地部署地大模型。

服务器准备

移动云服务器(试用申请网址)

  1. 进入官网页面后,进行实名认证,选择一个合适的云服务器。
    在这里插入图片描述

  2. 选择地区,以及服务器的型号与配置。
    在这里插入图片描述

  3. 网络配置(如果自己将要将自己的网站放在公网中时,需要先进行ICP备案。)以下操作将自己的网络地址配置到自己的云主机中。
    在这里插入图片描述

  4. 当前往支付完成后可以就得到一台Linux服务器。
    在这里插入图片描述
    在这里插入图片描述

  5. 进行密码修改
    在这里插入图片描述
    在这里插入图片描述

  6. 找到弹性公网IP,将系统默认给的公网IP分配给我们的云主机。
    在这里插入图片描述

  7. 远程登陆需要开放ssh端口(22)
    在这里插入图片描述

  8. 使用远程登陆软件,可以直接用vscode登陆,这里用xshell演示。
    在这里插入图片描述

环境准备

  1. 安装 Python 环境
    在Linux操作系统中,尽管通常会预装Python解释器,但其版本往往较低,可能不符合ChatGLM所需的最小Python版本要求(3.7及以上)。因此,在大多数情况下,用户需要部署一个符合要求的Python环境。然而,如果系统已经配备了满足条件的Python版本,则无需重复安装。
    尽管可以选择从源代码下载并编译安装Python,但为了简化安装过程,确保PyTorch等库的顺利安装,并避免对系统稳定性造成影响,推荐使用Anaconda发行版来安装Python环境。
# 下载 conda 安装包
wget https://repo.anaconda.com/archive/Anaconda3-2023.03-1-Linux-x86_64.sh
# 安装 conda 注意安装过程中指定安装路径
bash Anaconda3-2023.03-1-Linux-x86_64.sh
# 配置软连接
ln -s /[your-install-path]/anaconda3/condabin/conda /usr/bin/conda
  1. 安装 Git LFS
    为了高效地从 Hugging Face Hub 上下载 ChatGLM 模型到本地,并提高加载模型的响应效率,推荐先安装 Git LFS(Large File Storage)。Git LFS 是一种适用于 Git 仓库的工具,它能够优化大文件的管理,使得文件传输更加高效。
sudo yum install git -y
git --version
sudo yum install git-lfs -y

模型安装

  1. 下载 ChatGLM3
    首先,请从 Github 下载 ChatGLM3 仓库,并在仓库目录下使用 pip 安装所需的依赖。
    根据官方推荐,为了获得最佳的推理性能,建议使用 transformers 库的 4.30.2 版本,以及 torch 2.0 或更高版本。
git clone https://github.com/THUDM/ChatGLM3
cd ChatGLM3
# conda 创建虚拟环境
conda create -n torch python=3.10
# 激活环境 # 退出环境 conda deactivate
conda activate torch
# 下载依赖包
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn
  1. 下载预训练模型
    下面我们用 Git LFS 从 Hugging Face Hub 将模型下载到本地,从本地加载模型响应速度更快。
git lfs install
git clone https://huggingface.co/THUDM/chatglm3-6b

如果从你从 HuggingFace 下载比较慢,也可以从 ModelScope 中下载!

git lfs install
git clone https://www.modelscope.cn/ZhipuAI/chatglm3-6b.git

模型使用

首先,将你从 THUDM/ChatGLM3-6b 下载的预训练模型文件保存在 ChatGLM3 仓库的适当目录中。如果你是通过 ModelScope 获取的模型,请确保目录结构正确,因为加载模型时可能需要调整本地的路径设置。
ChatGLM3 支持三种使用方式:命令行界面、网页版界面和 API 接口。在运行模型之前,你需要找到对应使用方式的 Python 源代码文件,即 cli_demo.py、web_demo.py 和 openai_api.py。在这些文件中,你需要修改一行代码,使其指向你的模型文件。

model = AutoModel.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True).cuda()

修改两个地方:(1)本地模型的存放路径 THUDM/chatglm3-6b;(2)根据自己的硬件环境参考 DEPLOYMENT.md 选择模型加载方式,float() CPU 部署,cuda() GPU 部署。

  1. 命令行版 cli_demo.py
    命令行启动方式,首先找到 ChatGLM3 目录下的 cli_demo.py 文件,修改代码如下:
    在这里插入图片描述

修改完成之后,到 ChatGLM3 目录下运行 python cli_demo.py 启动服务
程序会在命令行中进行交互式的对话,在命令行中通过 用户: 进行输入指示,直接输入问题回车即可生成回复,输入 clear 可以清空对话历史,输入 stop 终止程序。
在这里插入图片描述
2. 网页版 web_demo.py
网页版和命令行相似,但是提供了更加友好交互页面,找到 ChatGLM3 目录下的 web_demo.py 文件,做出相同的代码修改,

然后,到 ChatGLM3 目录下运行 python web_demo.py 启动服务
程序会运行一个 Web Server,并输出一个访问地址,在浏览器中打开输出的地址即可使用。
在这里插入图片描述
3. API 部署 openai_api.py
这个部分将结合 ChatGPT-Next-Web为例,使得ChatGLM3 实现了 OpenAI 格式的流式 API 部署,这使得ChatGLM3可以作为任意基于 ChatGPT 的应用的后端。
首先,到 https://github.com/Yidadaa/ChatGPT-Next-Web/releases 下载 ChatGPT-Next-Web,这个交互页面很轻量级。
然后,到 ChatGLM3 目录下找到 openai_api.py 源码文件,和上面方式一样,修改本地模型路径和部署方式,还有根据自己需要修改最后一行代码中定义的 Host 和 Port,这是 ChatGPT 应用的访问 URL。
在这里插入图片描述

接着,在仓库目录下执行 python openai_api.py 启动模型服务
在这里插入图片描述

然后将日志打印出的接口地址 http://localhost:8000/ 写入 ChatGPT-Next-Web 的设置中,并添加自定义模型 chatglm3
在这里插入图片描述
完成设置之后,API部署就完成了。
在这里插入图片描述

结束语

了解更多移动云产品请移步官网移动云官网

这篇关于移动云以深度融合之服务,令“大”智慧贯穿云端的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1005881

相关文章

《纳瓦尔宝典》是纳瓦尔·拉维坎特(Naval Ravikant)的智慧箴言

《纳瓦尔宝典》是一本由埃里克·乔根森(Erik Jorgensen)编著的书籍,该书于2022年5月10日由中信出版社出版。这本书的核心内容围绕硅谷知名天使投资人纳瓦尔·拉维坎特(Naval Ravikant)的智慧箴言,特别是关于财富积累和幸福人生的原则与方法。 晓北斗推荐 《纳瓦尔宝典》 基本信息 书名:《纳瓦尔宝典》作者:[美] 埃里克·乔根森译者:赵灿出版时间:2022

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

安全管理体系化的智慧油站开源了。

AI视频监控平台简介 AI视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。用户只需在界面上进行简单的操作,就可以实现全视频的接入及布控。摄像头管理模块用于多种终端设备、智能设备的接入及管理。平台支持包括摄像头等终端感知设备接入,为整个平台提

【区块链 + 人才服务】区块链集成开发平台 | FISCO BCOS应用案例

随着区块链技术的快速发展,越来越多的企业开始将其应用于实际业务中。然而,区块链技术的专业性使得其集成开发成为一项挑战。针对此,广东中创智慧科技有限公司基于国产开源联盟链 FISCO BCOS 推出了区块链集成开发平台。该平台基于区块链技术,提供一套全面的区块链开发工具和开发环境,支持开发者快速开发和部署区块链应用。此外,该平台还可以提供一套全面的区块链开发教程和文档,帮助开发者快速上手区块链开发。

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

韦季李输入法_输入法和鼠标的深度融合

在数字化输入的新纪元,传统键盘输入方式正悄然进化。以往,面对实体键盘,我们常需目光游离于屏幕与键盘之间,以确认指尖下的精准位置。而屏幕键盘虽直观可见,却常因占据屏幕空间,迫使我们在操作与视野间做出妥协,频繁调整布局以兼顾输入与界面浏览。 幸而,韦季李输入法的横空出世,彻底颠覆了这一现状。它不仅对输入界面进行了革命性的重构,更巧妙地将鼠标这一传统外设融入其中,开创了一种前所未有的交互体验。 想象

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

我在移动打工的日志

客户:给我搞一下录音 我:不会。不在服务范围。 客户:是不想吧 我:笑嘻嘻(气笑) 客户:小姑娘明明会,却欺负老人 我:笑嘻嘻 客户:那我交话费 我:手机号 客户:给我搞录音 我:不会。不懂。没搞过。 客户:那我交话费 我:手机号。这是电信的啊!!我这是中国移动!! 客户:我不管,我要充话费,充话费是你们的 我:可是这是移动!!中国移动!! 客户:我这是手机号 我:那又如何,这是移动!你是电信!!

免费也能高质量!2024年免费录屏软件深度对比评测

我公司因为客户覆盖面广的原因经常会开远程会议,有时候说的内容比较广需要引用多份的数据,我记录起来有一定难度,所以一般都用录屏工具来记录会议内容。这次我们来一起探索有什么免费录屏工具可以提高我们的工作效率吧。 1.福晰录屏大师 链接直达:https://www.foxitsoftware.cn/REC/  录屏软件录屏功能就是本职,这款录屏工具在录屏模式上提供了多种选项,可以选择屏幕录制、窗口

用Unity2D制作一个人物,实现移动、跳起、人物静止和动起来时的动画:中(人物移动、跳起、静止动作)

上回我们学到创建一个地形和一个人物,今天我们实现一下人物实现移动和跳起,依次点击,我们准备创建一个C#文件 创建好我们点击进去,就会跳转到我们的Vision Studio,然后输入这些代码 using UnityEngine;public class Move : MonoBehaviour // 定义一个名为Move的类,继承自MonoBehaviour{private Rigidbo