自动驾驶场景中的长尾问题怎么解决?

2024-05-26 09:04

本文主要是介绍自动驾驶场景中的长尾问题怎么解决?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

自动驾驶长尾问题是指自动驾驶汽车中的边缘情况,即发生概率较低的可能场景。感知的长尾问题是当前限制单车智能自动驾驶车辆运行设计域的主要原因之一。自动驾驶的底层架构和大部分技术问题已经被解决,剩下的5%的长尾问题,逐渐成了制约自动驾驶发展的关键。这些问题包括各种零碎的场景、极端的情况和无法预测的人类行为。

自动驾驶中的边缘场景

长尾”是指自动驾驶汽车 (AV) 中的边缘情况,边缘情况是发生概率较低的可能场景。这些罕见的事件因为出现率较低且比较特殊,因此在数据集中经常被遗漏。虽然人类天生擅长处理边缘情况,但人工智能却不是这样。可能引起边缘场景的因素有:带有突起的卡车或者异形车辆、车辆急转弯、在拥挤的人群中行驶、乱穿马路的行人、极端天气或极差光照条件、打伞的人,人在车后搬箱子、树倒在路中央等等。

例子:

  1. 放透明薄膜在车前,透明物体是否可以被识别,车辆是否会减速
  2. 激光雷达公司Aeye就做了一次挑战,自动驾驶如何处理一个漂浮在路中央的气球。L4级无人驾驶汽车往往偏向避免碰撞,在这种情况下,它们会采取规避动作或者踩刹车,来避免不必要的事故。而气球是个软性的物体,可以直接无障碍的通过。

解决长尾问题的方法

合成数据是个大概念,而感知数据(nerf, camera/sensor sim)只是其中一个比较出圈的分支。在业界,合成数据在longtail behavior sim早已成为标准答案。合成数据,或者说sparse signal upsampling是解决长尾问题的第一性解法之一。长尾能力是模型泛化能力与数据内含信息量的乘积。

特斯拉解决方案:

用合成数据(synthetic data)生成边缘场景来扩充数据集
数据引擎的原理:首先,检测现有模型中的不准确之处,随后将此类案例添加到其单元测试中。它还收集更多类似案例的数据来重新训练模型。这种迭代方法允许它捕获尽可能多的边缘情况。制作边缘案例的主要挑战是收集和标注边缘情况的成本比较高,再一个就是收集行为有可能非常危险甚至无法实现。

NVIDIA解决方案:

NVIDIA 最近提出了一种名为“模仿训练”的战略方法(下图)。在这种方法中,真实世界中的系统故障案例在模拟环境中被重现,然后将它们用作自动驾驶汽车的训练数据。重复此循环,直到模型的性能收敛。

以下真实场景中由于卡车高度过高(上)、车辆凸出部分遮挡后车(下)导致模型输出时车框丢失,成为边缘场景,过NVIDIA改进后的模型可以在此边缘情况下生成正确的边界框:

一些思考:

Q:合成数据是否有价值?

A: 这里的价值分为两种 , 第一种是测试有效性, 即在生成的场景中测试 是否能发现探测算法中的一些不足, 第二种是训练有效性, 即生成的场景用于算法的训练是否也能够有效提升性能。

Q: 如何使用虚拟数据提升性能?虚拟数据真的有必要添加到训练集中去吗?添加进去了是否会产生性能回退?

A: 这些问题都难以回答, 于是产生了很多不一样的提高训练精度的方案:

  • 混合训练:在真实数据中添加不同比例的虚拟数据, 以求性能提升,
  • Transfer Learning:使用真实数据预训练好的模型,然后Freeze 某些layer, 再添加混合数据进行训练。
  • Imitation Learning:针对性设计一些模型失误的场景, 并由此产生一些数据,进而逐步提升模型的性能, 这一点也是非常自然的。在实际的数据采集和模型训练中, 也是针对性采集一些补充数据, 进而提升性能。
一些扩展:

为了彻底评估 AI 系统的稳健性,单元测试必须包括一般情况和边缘情况。然而,某些边缘案例可能无法从现有的真实世界数据集中获得。为此,人工智能从业者可以使用合成数据进行测试。

一个例子是ParallelEye-CS,这是一种用于测试自动驾驶汽车视觉智能的合成数据集。与使用真实世界数据相比,创建合成数据的好处是可以对每个图像的场景进行多维度控制。

合成数据将作为生产 AV 模型中边缘情况的可行解决方案。它用边缘案例补充现实世界的数据集,确保 AV 即使在异常事件下也能保持稳健。它也比真实世界的数据更具可扩展性,更不容易出错,并且更便宜。 

这篇关于自动驾驶场景中的长尾问题怎么解决?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1004021

相关文章

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

Goland debug失效详细解决步骤(合集)

《Golanddebug失效详细解决步骤(合集)》今天用Goland开发时,打断点,以debug方式运行,发现程序并没有断住,程序跳过了断点,直接运行结束,网上搜寻了大量文章,最后得以解决,特此在这... 目录Bug:Goland debug失效详细解决步骤【合集】情况一:Go或Goland架构不对情况二:

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2