梯度下降(Gradient Descent)原理以及Python代码

2024-05-26 08:48

本文主要是介绍梯度下降(Gradient Descent)原理以及Python代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

给定一个函数f(x),我们想知道当x是值是多少的时候使这个函数达到最小值。为了实现这个目标,我们可以使用梯度下降(Gradient Descent)进行近似求解。

梯度下降是一个迭代算法,具体地,下一次迭代令

x_{n+1} = x_{n} - \eta {f}'(x_{n})

{f}'(x)是梯度,其中\eta是学习率(learning rate),代表这一轮迭代使用多少负梯度进行更新。梯度下降非常简单有效,但是其中的原理是怎么样呢?

原理

为什么每次使用负梯度进行更新呢?这要从泰勒公式(Taylor's formula)说起:

f(x) = f(x_{0}) + \frac{​{f}'(x_{0})}{1!}(x-x_{0}) + \frac{f{}''(x_{0})}{2!}(x-x_{0}) + ...

泰勒公式的目的是使用x-x_{0}的多项式去逼近函数f(x),这里可以理解泰勒公式在x-x_{0}的展开是原函数的一个近似函数。

那泰勒公式跟梯度下降有什么关系呢?

我们的目标是使f(x_{n+1})\leq f(x_{n}),我们对f(x_{n+1})x_{n}处进行一阶泰勒展开:

f(x_{n+1}) \approx f(x_{n}) + {f}'(x_{n})(x_{n+1}-x_{n})

由此可知,我们只需令x_{n+1}-x_{n} = -{f}'(x_{n}),就会使f(x_{n+1})\leq f(x_{n})

所以迭代公式可以为x_{n+1}= x_{n} -\eta {f}'(x_{n})

案例

下面我们看具体例子,假设我们有以下函数

f(x) = \frac{1}{2}\left \| Ax-b \right \|^2

矩阵和A向量b已知,我们想知道当x取值为多少的时候,函数f(x)的值最小。

根据梯度下降法,我们只需计算出负梯度,然给定一个初始值x_{0},不断迭代就能找到一个近似解了。负梯度计算如下:

{f}'(x) =A ^{T}(Ax-b)=A ^{T}Ax-A ^{T}b

接下来让我写一段代码解决这个问题

定义梯度下降函数

首先,定义cal_gradient函数用来计算梯度,然后使用gradient_decent进行迭代,其中learning_rate就是公式中的\eta,这个值需要合理设置,过大的话会导致震荡,过下的话又会导致迭代时间过长。step代表迭代的次数,理想情况下找到满意的解就停止。

我们会在代码中调整这两个参数查看它们对求解过程的影响。

import numpy as np
import time#calculate gradient
def cal_gradient(A, b, x):left = np.dot(np.dot(A.T, A), x)right = np.dot(A.T, b)gradient = left - rightreturn gradient# iteration
def gradient_decent(x, A, b, learning_rate, step):start = time.time()for i in range(step):gradient = cal_gradient(A, b, x)delta = learning_rate * gradientx = x - deltaend = time.time()time_cost = round(end - start, 4)print('done! x = {a}, time cost = {b}s'.format(a=x, b=time_cost))

求解过程

我们给了矩阵和A向量b的值以及标准答案 [29, 16, 3],然后我们随机初始化一个x_{0},让学习率\eta =0.01,迭代次数step=1000000

A = np.array([[1.0, -2.0, 1.0], [0.0, 2.0, -8.0], [-4.0, 5.0, 9.0]])
b = np.array([0.0, 8.0, -9.0])
# Giveb A and b,the solution x is [29, 16, 3]x0 = np.array([1.0, 1.0, 1.0])
learning_rate = 0.01
step = 1000000gradient_decent(x0, A, b, learning_rate, step)

结果

以下为结果,可以看出求得的近似解和标准答案 [29, 16, 3]还是非常接近的。

done! x = [28.98272933 15.99042465  2.99763054], time cost = 4.6037s

调整学习率

其他参数都一样,我们让学习率变小,运行相同的步数,从以下结果看到求得的近似解跟标准答案还有一定差距。这意味着小的过小学习率需要学习更久的时间。

learning_rate = 0.001# result
# done! x = [15.8048349   8.68422815  1.18968306], time cost = 4.5997s

调整初始值

我们只调整初始值,学习相同的步数,发现求得的近似解尽管与标准答案相似,但是不如第一个方法求得解。这说明梯度下降方法也会受到初始值得影响。

x0 = np.array([1000, 1000, 1000])# result
# done! x = [29.78036839 16.43265826  3.10706301], time cost = 4.5528s

总结

梯度下降方法是一种非常有效的优化方法,它的效果会受到初始值、学习率、步数的影响。如果要说缺点的话,就是它容易找到局部最优解,有时候会发生震荡现象。

 

参考

https://sm1les.com/2019/03/01/gradient-descent-and-newton-method/

这篇关于梯度下降(Gradient Descent)原理以及Python代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1003996

相关文章

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小