【控制实践——二轮平衡车】【三】基于PID的直立控制

2024-05-26 05:04

本文主要是介绍【控制实践——二轮平衡车】【三】基于PID的直立控制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


传送门

  • 系列博客
  • 前言
  • 直立运动分析
  • 基于PID控制器的直立控制
    • 角度环控制
    • 角速度控制
    • 总结
  • 电机转速的控制
    • 前言
    • 电机转速控制
  • 结语


系列博客

【控制实践——二轮平衡车】【一】运动分析及动力学建模
【控制实践——二轮平衡车】【二】实物设计和开源结构&代码
【控制实践——二轮平衡车】【三】基于PID的直立控制

前言

在前面两篇博客中,分别对二轮平衡车的动力学进行分析,并且制作实物用于验证算法可行性。
后面的博客将采用不同的控制算法来实现二轮平衡车的控制。算法的实现代码将保存在开源仓库不同分支中。

直立运动分析

在第一篇的博客中,对不同坐标系下的运动过程进行受力分析,得到了两个描述二轮平衡车的运动公式。

  • 惯性系下(以地面为参考系)
    ( m p + m w ) x ⋅ ⋅ w = m p l α ⋅ ⋅ c o s α − m p l α ⋅ 2 s i n α (1) \boldsymbol{(m_{p}+m_{w})} \boldsymbol{\overset{\cdot \cdot}x_{w}}=\boldsymbol{m_{p}l}\boldsymbol{\overset{\cdot \cdot}\alpha cos \alpha}-\boldsymbol{m_{p}l}\boldsymbol{\overset{\cdot }\alpha^{2}sin\alpha}\ \tag{1} (mp+mw)x⋅⋅w=mplα⋅⋅cosαmplα2sinα (1)
  • 非惯性系下(以车轮中心为参考系)
    J α ⋅ ⋅ = m p g l s i n α + m p x ⋅ ⋅ w l c o s α (2) \boldsymbol{J \overset{\cdot\cdot}{\alpha}} = \boldsymbol{m_{p}gl sin\alpha}+\boldsymbol{m_{p} \overset{\cdot \cdot}x_{w}lcos\alpha} \tag{2} Jα⋅⋅=mpglsinα+mpx⋅⋅wlcosα(2)
  • 不同角度 α ˙ 0 \boldsymbol{\dot{\alpha}_{0}} α˙0 α 0 \boldsymbol{\alpha_{0}} α0下,二轮平衡车的角度、角速度、角加速度变化公式
    ( J − m p 2 l 2 c o s 2 α m p + m w ) α ⋅ ⋅ = m p g l s i n α − m p 2 l 2 s i n α c o s α m p + m w α ⋅ 2 (3) \boldsymbol{(J-\frac{m_{p}^{2}l^{2}cos^{2}\alpha}{m_{p}+m_{w}}) \overset{\cdot\cdot}{\alpha}} =\ \boldsymbol{m_{p}gl sin\alpha}-\ \boldsymbol{\frac{m_{p}^{2}l^{2}sin\alpha cos\alpha}{m_{p}+m_{w}} \overset{\cdot}\alpha^{2}} \tag{3} (Jmp+mwmp2l2cos2α)α⋅⋅= mpglsinα mp+mwmp2l2sinαcosαα2(3)
    因为一定知道了初始状态,就可以计算代入等式右边得到角加速度,进而计算出新的角速度和角度,周而复始。

分析三个公式,哪个公式适合用来做控制分析呢。

  • 公式(1) 描述的是转动 α \boldsymbol{\alpha} α轮子运动 x w \boldsymbol{x_{w}} xw的影响,此时轮子是被动的一方。即
    α → x w \boldsymbol{\alpha} \rightarrow \boldsymbol{x_{w}} αxw
  • 公式(2) 描述的是轮子运动 x ¨ w \boldsymbol{\ddot{x}_{w}} x¨w转动 α ¨ \boldsymbol{\ddot{\alpha}} α¨的影响,进而影响角度 α \boldsymbol{\alpha} α。即
    x ¨ w → α ¨ \boldsymbol{\ddot{x}_{w}} \rightarrow \boldsymbol{\ddot{\alpha}} x¨wα¨
  • 公式(3) 描述的是初始角度 α 0 \boldsymbol{\alpha_{0}} α0和初始角速度 α ˙ 0 \boldsymbol{\dot{\alpha}_{0}} α˙0对自身转动的影响,即自身角度转动的演化趋势。

显然,在直立控制时,希望控制的是平衡车的转动运动,并且需要有一个可控量来完成,因此只有公式(2)适合作为被控对象模型。即通过控制轮子运动来控制转动运动,正好符合二轮平衡车的工作原理

基于PID控制器的直立控制

设状态向量为 X = [ α α ˙ ] \bold{X}=\begin{bmatrix} \boldsymbol{\alpha}\\ \boldsymbol{\dot{\alpha}}\end{bmatrix} X=[αα˙],系统输入为 U = x ¨ w \bold{U}=\boldsymbol{\ddot{x}_{w}} U=x¨w,系统状态方程为:
X ˙ = [ 0 1 m p g l s i n 0 ] X + [ 0 m p l c o s α ] U (4) \bold{\dot{X}}=\begin{bmatrix}0 & 1\\\boldsymbol{m_{p}gl sin} &0\end{bmatrix}\bold{X}+\begin{bmatrix}0 \\ \boldsymbol{m_{p}lcos\alpha}\end{bmatrix}\bold{U} \tag{4} X˙=[0mpglsin10]X+[0mplcosα]U(4)
列出状态方程的目的,主要是为了能够直观地描述直立运动的状态转移过程,帮助理解控制设计的原理。下面采用PID控制器进行控制设计。

角度环控制

  • 从状态方程可以看出,角度的变化只受到角速度的影响,即:
    d α d t = α ˙ (5) \boldsymbol{\frac{ d\alpha}{dt}} = \boldsymbol{\dot{\alpha}} \tag{5} dt=α˙(5)
    设角度期望为 α r e f \alpha_{ref} αref,则角度误差 e r r o r α error_{\alpha} errorα为:
    e r r o r α = α r e f − α (6) error_{\alpha}=\boldsymbol{\alpha_{ref}} - \boldsymbol{\alpha} \tag{6} errorα=αrefα(6)
    因此在做角度的控制的时候,将 α ˙ \boldsymbol{\dot{\alpha}} α˙作为系统输入 U α \bold{U_{\alpha}} Uα,并且根据PID控制器的控制律可以得到:
    U α = K p e r r o r α + K i ∫ e r r o r α d t + K d ∗ d e r r o r α d t (7) \bold{U_{\alpha}}=K_{p}error_{\alpha}+K_{i}\int{error_{\alpha}dt}+K_{d}*\frac{derror_{\alpha}}{dt} \tag{7} Uα=Kperrorα+Kierrorαdt+Kddtderrorα(7)
    得到的角度控制律 U α \bold{U_{\alpha}} Uα原本是直接作用到被控对象里来影响角度 α \boldsymbol{\alpha} α,但是被控对象无法直接决定角速度的数值,因此此处的控制律 U α \bold{U_{\alpha}} Uα即为期望的角速度数值 α ˙ r e f \boldsymbol{\dot{\alpha}_{ref}} α˙ref。即:
    α ˙ r e f = U α (8) \boldsymbol{\dot{\alpha}_{ref}} = \bold{U_{\alpha}} \tag{8} α˙ref=Uα(8)

角速度控制

  • 从状态方程可以看出,角速度的变化受到了角加速度(重力分量 m p g l s i n α \boldsymbol{m_{p}gl sin\alpha} mpglsinα惯性力分量 m p l c o s α x ¨ w \boldsymbol{m_{p}lcos\alpha\ddot{x}_{w}} mplcosαx¨w)影响。
    d α ˙ d t = α ¨ = 1 J ( m p g l s i n α + m p x ⋅ ⋅ w l c o s α ) (9) \boldsymbol{\frac{ d \dot{\alpha}}{dt}} = \boldsymbol{\ddot{\alpha}}=\frac{1}{\boldsymbol{J}}(\boldsymbol{m_{p}gl sin\alpha}+\boldsymbol{m_{p} \overset{\cdot \cdot}x_{w}lcos\alpha}) \tag{9} dtdα˙=α¨=J1(mpglsinα+mpx⋅⋅wlcosα)(9)
    角速度误差 e r r o r α ˙ error_{\dot{\alpha}} errorα˙为:
    e r r o r α ˙ = α ˙ r e f − α ˙ (10) error_{\dot{\alpha}} = \boldsymbol{\dot{\alpha}_{ref}} - \boldsymbol{\dot{\alpha}} \tag{10} errorα˙=α˙refα˙(10)
    同样在做角速度的控制时,将 α ¨ \boldsymbol{\ddot{\alpha}} α¨作为系统输入 U α ˙ \bold{U_{\dot{\alpha}}} Uα˙,并且根据PID控制器的控制律可以得到:
    U α ˙ = K p e r r o r α ˙ + K i ∫ e r r o r α ˙ d t + K d ∗ d e r r o r α ˙ d t (11) \bold{U_{\dot{\alpha}}}=K_{p}error_{\dot{\alpha}}+K_{i}\int{error_{\dot{\alpha}}dt}+K_{d}*\frac{derror_{\dot{\alpha}}}{dt} \tag{11} Uα˙=Kperrorα˙+Kierrorα˙dt+Kddtderrorα˙(11)
    同样,可以得到:
    α ¨ r e f = U α ˙ (12) \boldsymbol{\ddot{\alpha}_{ref}} = \bold{U_{\dot{\alpha}}} \tag{12} α¨ref=Uα˙(12)
    根据公式(9) 可以得到期望的轮子加速度 x ¨ w , r e f \boldsymbol{\ddot{x}_{w,ref}} x¨w,ref
    x ¨ w , r e f = ( J α ¨ r e f − m p g l s i n α ) / m p l c o s α (13) \boldsymbol{\ddot{x}_{w,ref}} = (\boldsymbol{J \ddot{\alpha}_{ref}} - \boldsymbol{m_{p}gl sin\alpha})/\boldsymbol{m_{p} lcos\alpha} \tag{13} x¨w,ref=(Jα¨refmpglsinα)/mplcosα(13)

总结

前面的角度角速度控制,其实就是很常见的串级PID控制器,故意拆成两部分来分析,是为了更清晰地展示串级PID控制器的原理,以及为后续一些算法的变种做铺垫,即,角度控制用一种控制算法,角速度控制用另外的算法是否也可行?

  • 直立控制的框图:
  • m a t l a b matlab matlab 仿真
    仿真参数如下:
    m = 0.857 k g m=0.857kg m=0.857kg
    g = 9.8 m / s 2 g=9.8m/s^2 g=9.8m/s2
    l = 0.05 m l=0.05m l=0.05m
    J = 0.0021 k g ⋅ m 2 J = 0.0021kg \cdot m^2 J=0.0021kgm2
    T = 0.002 s T =0.002s T=0.002s
    K p o u t = 5 , K i o u t = 0.1 , K d o u t = 0 Kp_{out}=5,Ki_{out}=0.1,Kd_{out}=0 Kpout=5Kiout=0.1Kdout=0
    K p i n = 100 , K i i n = 1 , K d i n = 0 Kp_{in}=100,Ki_{in}=1,Kd_{in}=0 Kpin=100Kiin=1Kdin=0

这些参数是第二篇博客平衡车的实物参数,以及控制参数也与实际的控制参数一致

T = 0.002;
%离散时间
n = 10000;
%仿真步数
m = 0.857;
%平衡车重量,单位kg
g = 9.8;
%重力加速度,单位m/s2
l = 0.05;
%轮子中心到质心距离,单位m
J = m*l*l;
%转动惯量
kp_out = 5;
ki_out = 0.1;
kd_out = 0;
%角度pid参数
kp_in = 100;
ki_in = 1;
kd_in = 0;
%角速度pid参数a_ref = zeros(n,1);
%角度期望,单位°
da_ref = zeros(n,1);
%角速度期望,单位rad/s
dda_ref = zeros(n,1);
%角加速度期望,单位rad/s2
u = zeros(n,1);
%系统输入,即轮子的加速度,单位m/s2a = zeros(n,1);
%角度状态,单位°
da = zeros(n,1);
%角速度状态,单位rad/s
dda = zeros(n,1);
%角加速度状态,单位rad/s2
time = zeros(n,1);
%时间轴a_integral = 0;
%角度误差积分
da_integral = 0;
%角速度误差积分
a_last_error = 0;
%角度上次误差
da_last_error = 0;
%角速度上次误差
for i = 1:ntime(i) = (i-1)*T;a_ref(i) = 10 * sin(time(i));% --------------------------- 仿真计算 ---------------------------%a_error = a_ref(i) - a(i);%角度误差a_integral = a_integral + a_error;%积分a_diff = (a_error - a_last_error)/T;%微分a_output = kp_out * a_error + ki_out * a_integral * T + kd_out * a_diff;%角度PID计算,对应公式7% --------------------------- 角度环 ---------------------------%da_ref(i) = a_output;%角速度期望da_error = da_ref(i) - da(i);%角速度误差da_integral = da_integral + da_error;%积分da_diff = (da_error - da_last_error)/T;%差分da_output = kp_in * da_error + ki_in * da_integral * T + kd_in * da_diff;%角速度PID计算,对应公式11  % --------------------------- 角速度环 ---------------------------%dda_ref(i) = da_output;%角加速度期望u(i) = (J*dda_ref(i) - m*g*l*sin(a(i)/180*pi)) / (m*l*cos(a(i)/180*pi));%计算系统输入,对应公式13% --------------------------- 控制解算 ---------------------------%if i == nbreak;enddda(i) = (m*g*l*sin(a(i)/180*pi) + m*l*cos(a(i)/180*pi)*u(i)) / J; %状态方程,对应公式2da(i+1) = da(i) + dda(i) * T;%角速度计算a(i+1) = a(i) + da(i) * T / pi * 180;%角度计算% --------------------------- 被控对象 ---------------------------%
endfigure(1);
subplot(2,2,1);
plot(time,a,'r',time,a_ref,'g');
title('角度响应曲线');
legend('角度','角度期望');
xlabel('time/s');
ylabel('角度/°');
subplot(2,2,2);
plot(time,da,'r',time,da_ref,'g');
title('角速度响应曲线');
legend('角速度','角速度期望');
xlabel('time/s');
ylabel('rad/s');
subplot(2,2,3);
plot(time,dda,'r',time,dda_ref,'g');
title('角加速度曲线');
legend('角加速度','角加速度期望');
xlabel('time/s');
ylabel('rad/s^2');
subplot(2,2,4);
plot(time,u,'r');
title('系统输入曲线');
legend('U');
xlabel('time/s');
ylabel('m/s^2');

仿真结果如下:
在这里插入图片描述
这里所用到的控制参数与实际使用的参数一致,有兴趣的同学可以去开源的控制代码里查看,代码在control.c文件中

电机转速的控制

前言

在直立控制中,采用的系统输入 U \bold{U} U是电机轮子的加速度 x ¨ w \boldsymbol{\ddot{x}_{w}} x¨w,因此实现平衡车直立的关键因素就是控制电机实现我们期望的运动,对电机的转速控制具有十分重要的意义。

电机转速控制

由于不同的电机转速的转速控制方式不同,因此这篇博客仅给出转速控制的一些思路,不做仿真和模型讨论。

电机转速控制的关键是获取电机的当前转速信息,常用的传感器有编码器光电传感等。

而对于不同类型的电机采用的控制算法也不同。

  • 对于直流驱动的电机来说,通常采用增量式PID控制
  • 对于带有FOC的无刷电机来说,通常采用位置式PID控制

以上是个人经验所给出的建议,仅供参考。

无论以何种方式,在实现电机转速控制后,需要根据直立控制的解算结果,来得到当前的期望转速 x ˙ w , r e f \boldsymbol{\dot{x}_{w,ref}} x˙w,ref,即满足以下关系:
x ˙ w , r e f ( k + 1 ) = x ˙ w ( k ) + x ¨ w , r e f ( k ) ∗ T (14) \boldsymbol{\dot{x}_{w,ref}}(k+1) = \boldsymbol{\dot{x}_{w}}(k) + \boldsymbol{\ddot{x}_{w,ref}}(k) * T \tag{14} x˙w,ref(k+1)=x˙w(k)+x¨w,ref(k)T(14)
其中, T T T为离散周期, k k k为时刻序号。

最后,再将公式(14)计算得到的期望电机转速传入电机转速控制器中,即可完成整个平衡车的控制周期。即完整的控制框图为:
在这里插入图片描述

结语

实践是检验真理的唯一标准,看懂原理的同时也需要多实践。
最后再贴一下开源的代码按需自取:https://gitee.com/HaveALitttleSao/balance_car_control_code
放一下我个人调试的效果视频

  • 俯视角度

二轮平衡车调试视频——俯视视角

  • 侧面角度

二轮平衡车调试视频——侧面视角

以防有人说我把平衡车固定死造假 \doge

这篇关于【控制实践——二轮平衡车】【三】基于PID的直立控制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1003574

相关文章

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶

Python异步编程中asyncio.gather的并发控制详解

《Python异步编程中asyncio.gather的并发控制详解》在Python异步编程生态中,asyncio.gather是并发任务调度的核心工具,本文将通过实际场景和代码示例,展示如何结合信号量... 目录一、asyncio.gather的原始行为解析二、信号量控制法:给并发装上"节流阀"三、进阶控制

使用DrissionPage控制360浏览器的完美解决方案

《使用DrissionPage控制360浏览器的完美解决方案》在网页自动化领域,经常遇到需要保持登录状态、保留Cookie等场景,今天要分享的方案可以完美解决这个问题:使用DrissionPage直接... 目录完整代码引言为什么要使用已有用户数据?核心代码实现1. 导入必要模块2. 关键配置(重点!)3.

Android App安装列表获取方法(实践方案)

《AndroidApp安装列表获取方法(实践方案)》文章介绍了Android11及以上版本获取应用列表的方案调整,包括权限配置、白名单配置和action配置三种方式,并提供了相应的Java和Kotl... 目录前言实现方案         方案概述一、 androidManifest 三种配置方式

Spring Boot中定时任务Cron表达式的终极指南最佳实践记录

《SpringBoot中定时任务Cron表达式的终极指南最佳实践记录》本文详细介绍了SpringBoot中定时任务的实现方法,特别是Cron表达式的使用技巧和高级用法,从基础语法到复杂场景,从快速启... 目录一、Cron表达式基础1.1 Cron表达式结构1.2 核心语法规则二、Spring Boot中定