【控制实践——二轮平衡车】【三】基于PID的直立控制

2024-05-26 05:04

本文主要是介绍【控制实践——二轮平衡车】【三】基于PID的直立控制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


传送门

  • 系列博客
  • 前言
  • 直立运动分析
  • 基于PID控制器的直立控制
    • 角度环控制
    • 角速度控制
    • 总结
  • 电机转速的控制
    • 前言
    • 电机转速控制
  • 结语


系列博客

【控制实践——二轮平衡车】【一】运动分析及动力学建模
【控制实践——二轮平衡车】【二】实物设计和开源结构&代码
【控制实践——二轮平衡车】【三】基于PID的直立控制

前言

在前面两篇博客中,分别对二轮平衡车的动力学进行分析,并且制作实物用于验证算法可行性。
后面的博客将采用不同的控制算法来实现二轮平衡车的控制。算法的实现代码将保存在开源仓库不同分支中。

直立运动分析

在第一篇的博客中,对不同坐标系下的运动过程进行受力分析,得到了两个描述二轮平衡车的运动公式。

  • 惯性系下(以地面为参考系)
    ( m p + m w ) x ⋅ ⋅ w = m p l α ⋅ ⋅ c o s α − m p l α ⋅ 2 s i n α (1) \boldsymbol{(m_{p}+m_{w})} \boldsymbol{\overset{\cdot \cdot}x_{w}}=\boldsymbol{m_{p}l}\boldsymbol{\overset{\cdot \cdot}\alpha cos \alpha}-\boldsymbol{m_{p}l}\boldsymbol{\overset{\cdot }\alpha^{2}sin\alpha}\ \tag{1} (mp+mw)x⋅⋅w=mplα⋅⋅cosαmplα2sinα (1)
  • 非惯性系下(以车轮中心为参考系)
    J α ⋅ ⋅ = m p g l s i n α + m p x ⋅ ⋅ w l c o s α (2) \boldsymbol{J \overset{\cdot\cdot}{\alpha}} = \boldsymbol{m_{p}gl sin\alpha}+\boldsymbol{m_{p} \overset{\cdot \cdot}x_{w}lcos\alpha} \tag{2} Jα⋅⋅=mpglsinα+mpx⋅⋅wlcosα(2)
  • 不同角度 α ˙ 0 \boldsymbol{\dot{\alpha}_{0}} α˙0 α 0 \boldsymbol{\alpha_{0}} α0下,二轮平衡车的角度、角速度、角加速度变化公式
    ( J − m p 2 l 2 c o s 2 α m p + m w ) α ⋅ ⋅ = m p g l s i n α − m p 2 l 2 s i n α c o s α m p + m w α ⋅ 2 (3) \boldsymbol{(J-\frac{m_{p}^{2}l^{2}cos^{2}\alpha}{m_{p}+m_{w}}) \overset{\cdot\cdot}{\alpha}} =\ \boldsymbol{m_{p}gl sin\alpha}-\ \boldsymbol{\frac{m_{p}^{2}l^{2}sin\alpha cos\alpha}{m_{p}+m_{w}} \overset{\cdot}\alpha^{2}} \tag{3} (Jmp+mwmp2l2cos2α)α⋅⋅= mpglsinα mp+mwmp2l2sinαcosαα2(3)
    因为一定知道了初始状态,就可以计算代入等式右边得到角加速度,进而计算出新的角速度和角度,周而复始。

分析三个公式,哪个公式适合用来做控制分析呢。

  • 公式(1) 描述的是转动 α \boldsymbol{\alpha} α轮子运动 x w \boldsymbol{x_{w}} xw的影响,此时轮子是被动的一方。即
    α → x w \boldsymbol{\alpha} \rightarrow \boldsymbol{x_{w}} αxw
  • 公式(2) 描述的是轮子运动 x ¨ w \boldsymbol{\ddot{x}_{w}} x¨w转动 α ¨ \boldsymbol{\ddot{\alpha}} α¨的影响,进而影响角度 α \boldsymbol{\alpha} α。即
    x ¨ w → α ¨ \boldsymbol{\ddot{x}_{w}} \rightarrow \boldsymbol{\ddot{\alpha}} x¨wα¨
  • 公式(3) 描述的是初始角度 α 0 \boldsymbol{\alpha_{0}} α0和初始角速度 α ˙ 0 \boldsymbol{\dot{\alpha}_{0}} α˙0对自身转动的影响,即自身角度转动的演化趋势。

显然,在直立控制时,希望控制的是平衡车的转动运动,并且需要有一个可控量来完成,因此只有公式(2)适合作为被控对象模型。即通过控制轮子运动来控制转动运动,正好符合二轮平衡车的工作原理

基于PID控制器的直立控制

设状态向量为 X = [ α α ˙ ] \bold{X}=\begin{bmatrix} \boldsymbol{\alpha}\\ \boldsymbol{\dot{\alpha}}\end{bmatrix} X=[αα˙],系统输入为 U = x ¨ w \bold{U}=\boldsymbol{\ddot{x}_{w}} U=x¨w,系统状态方程为:
X ˙ = [ 0 1 m p g l s i n 0 ] X + [ 0 m p l c o s α ] U (4) \bold{\dot{X}}=\begin{bmatrix}0 & 1\\\boldsymbol{m_{p}gl sin} &0\end{bmatrix}\bold{X}+\begin{bmatrix}0 \\ \boldsymbol{m_{p}lcos\alpha}\end{bmatrix}\bold{U} \tag{4} X˙=[0mpglsin10]X+[0mplcosα]U(4)
列出状态方程的目的,主要是为了能够直观地描述直立运动的状态转移过程,帮助理解控制设计的原理。下面采用PID控制器进行控制设计。

角度环控制

  • 从状态方程可以看出,角度的变化只受到角速度的影响,即:
    d α d t = α ˙ (5) \boldsymbol{\frac{ d\alpha}{dt}} = \boldsymbol{\dot{\alpha}} \tag{5} dt=α˙(5)
    设角度期望为 α r e f \alpha_{ref} αref,则角度误差 e r r o r α error_{\alpha} errorα为:
    e r r o r α = α r e f − α (6) error_{\alpha}=\boldsymbol{\alpha_{ref}} - \boldsymbol{\alpha} \tag{6} errorα=αrefα(6)
    因此在做角度的控制的时候,将 α ˙ \boldsymbol{\dot{\alpha}} α˙作为系统输入 U α \bold{U_{\alpha}} Uα,并且根据PID控制器的控制律可以得到:
    U α = K p e r r o r α + K i ∫ e r r o r α d t + K d ∗ d e r r o r α d t (7) \bold{U_{\alpha}}=K_{p}error_{\alpha}+K_{i}\int{error_{\alpha}dt}+K_{d}*\frac{derror_{\alpha}}{dt} \tag{7} Uα=Kperrorα+Kierrorαdt+Kddtderrorα(7)
    得到的角度控制律 U α \bold{U_{\alpha}} Uα原本是直接作用到被控对象里来影响角度 α \boldsymbol{\alpha} α,但是被控对象无法直接决定角速度的数值,因此此处的控制律 U α \bold{U_{\alpha}} Uα即为期望的角速度数值 α ˙ r e f \boldsymbol{\dot{\alpha}_{ref}} α˙ref。即:
    α ˙ r e f = U α (8) \boldsymbol{\dot{\alpha}_{ref}} = \bold{U_{\alpha}} \tag{8} α˙ref=Uα(8)

角速度控制

  • 从状态方程可以看出,角速度的变化受到了角加速度(重力分量 m p g l s i n α \boldsymbol{m_{p}gl sin\alpha} mpglsinα惯性力分量 m p l c o s α x ¨ w \boldsymbol{m_{p}lcos\alpha\ddot{x}_{w}} mplcosαx¨w)影响。
    d α ˙ d t = α ¨ = 1 J ( m p g l s i n α + m p x ⋅ ⋅ w l c o s α ) (9) \boldsymbol{\frac{ d \dot{\alpha}}{dt}} = \boldsymbol{\ddot{\alpha}}=\frac{1}{\boldsymbol{J}}(\boldsymbol{m_{p}gl sin\alpha}+\boldsymbol{m_{p} \overset{\cdot \cdot}x_{w}lcos\alpha}) \tag{9} dtdα˙=α¨=J1(mpglsinα+mpx⋅⋅wlcosα)(9)
    角速度误差 e r r o r α ˙ error_{\dot{\alpha}} errorα˙为:
    e r r o r α ˙ = α ˙ r e f − α ˙ (10) error_{\dot{\alpha}} = \boldsymbol{\dot{\alpha}_{ref}} - \boldsymbol{\dot{\alpha}} \tag{10} errorα˙=α˙refα˙(10)
    同样在做角速度的控制时,将 α ¨ \boldsymbol{\ddot{\alpha}} α¨作为系统输入 U α ˙ \bold{U_{\dot{\alpha}}} Uα˙,并且根据PID控制器的控制律可以得到:
    U α ˙ = K p e r r o r α ˙ + K i ∫ e r r o r α ˙ d t + K d ∗ d e r r o r α ˙ d t (11) \bold{U_{\dot{\alpha}}}=K_{p}error_{\dot{\alpha}}+K_{i}\int{error_{\dot{\alpha}}dt}+K_{d}*\frac{derror_{\dot{\alpha}}}{dt} \tag{11} Uα˙=Kperrorα˙+Kierrorα˙dt+Kddtderrorα˙(11)
    同样,可以得到:
    α ¨ r e f = U α ˙ (12) \boldsymbol{\ddot{\alpha}_{ref}} = \bold{U_{\dot{\alpha}}} \tag{12} α¨ref=Uα˙(12)
    根据公式(9) 可以得到期望的轮子加速度 x ¨ w , r e f \boldsymbol{\ddot{x}_{w,ref}} x¨w,ref
    x ¨ w , r e f = ( J α ¨ r e f − m p g l s i n α ) / m p l c o s α (13) \boldsymbol{\ddot{x}_{w,ref}} = (\boldsymbol{J \ddot{\alpha}_{ref}} - \boldsymbol{m_{p}gl sin\alpha})/\boldsymbol{m_{p} lcos\alpha} \tag{13} x¨w,ref=(Jα¨refmpglsinα)/mplcosα(13)

总结

前面的角度角速度控制,其实就是很常见的串级PID控制器,故意拆成两部分来分析,是为了更清晰地展示串级PID控制器的原理,以及为后续一些算法的变种做铺垫,即,角度控制用一种控制算法,角速度控制用另外的算法是否也可行?

  • 直立控制的框图:
  • m a t l a b matlab matlab 仿真
    仿真参数如下:
    m = 0.857 k g m=0.857kg m=0.857kg
    g = 9.8 m / s 2 g=9.8m/s^2 g=9.8m/s2
    l = 0.05 m l=0.05m l=0.05m
    J = 0.0021 k g ⋅ m 2 J = 0.0021kg \cdot m^2 J=0.0021kgm2
    T = 0.002 s T =0.002s T=0.002s
    K p o u t = 5 , K i o u t = 0.1 , K d o u t = 0 Kp_{out}=5,Ki_{out}=0.1,Kd_{out}=0 Kpout=5Kiout=0.1Kdout=0
    K p i n = 100 , K i i n = 1 , K d i n = 0 Kp_{in}=100,Ki_{in}=1,Kd_{in}=0 Kpin=100Kiin=1Kdin=0

这些参数是第二篇博客平衡车的实物参数,以及控制参数也与实际的控制参数一致

T = 0.002;
%离散时间
n = 10000;
%仿真步数
m = 0.857;
%平衡车重量,单位kg
g = 9.8;
%重力加速度,单位m/s2
l = 0.05;
%轮子中心到质心距离,单位m
J = m*l*l;
%转动惯量
kp_out = 5;
ki_out = 0.1;
kd_out = 0;
%角度pid参数
kp_in = 100;
ki_in = 1;
kd_in = 0;
%角速度pid参数a_ref = zeros(n,1);
%角度期望,单位°
da_ref = zeros(n,1);
%角速度期望,单位rad/s
dda_ref = zeros(n,1);
%角加速度期望,单位rad/s2
u = zeros(n,1);
%系统输入,即轮子的加速度,单位m/s2a = zeros(n,1);
%角度状态,单位°
da = zeros(n,1);
%角速度状态,单位rad/s
dda = zeros(n,1);
%角加速度状态,单位rad/s2
time = zeros(n,1);
%时间轴a_integral = 0;
%角度误差积分
da_integral = 0;
%角速度误差积分
a_last_error = 0;
%角度上次误差
da_last_error = 0;
%角速度上次误差
for i = 1:ntime(i) = (i-1)*T;a_ref(i) = 10 * sin(time(i));% --------------------------- 仿真计算 ---------------------------%a_error = a_ref(i) - a(i);%角度误差a_integral = a_integral + a_error;%积分a_diff = (a_error - a_last_error)/T;%微分a_output = kp_out * a_error + ki_out * a_integral * T + kd_out * a_diff;%角度PID计算,对应公式7% --------------------------- 角度环 ---------------------------%da_ref(i) = a_output;%角速度期望da_error = da_ref(i) - da(i);%角速度误差da_integral = da_integral + da_error;%积分da_diff = (da_error - da_last_error)/T;%差分da_output = kp_in * da_error + ki_in * da_integral * T + kd_in * da_diff;%角速度PID计算,对应公式11  % --------------------------- 角速度环 ---------------------------%dda_ref(i) = da_output;%角加速度期望u(i) = (J*dda_ref(i) - m*g*l*sin(a(i)/180*pi)) / (m*l*cos(a(i)/180*pi));%计算系统输入,对应公式13% --------------------------- 控制解算 ---------------------------%if i == nbreak;enddda(i) = (m*g*l*sin(a(i)/180*pi) + m*l*cos(a(i)/180*pi)*u(i)) / J; %状态方程,对应公式2da(i+1) = da(i) + dda(i) * T;%角速度计算a(i+1) = a(i) + da(i) * T / pi * 180;%角度计算% --------------------------- 被控对象 ---------------------------%
endfigure(1);
subplot(2,2,1);
plot(time,a,'r',time,a_ref,'g');
title('角度响应曲线');
legend('角度','角度期望');
xlabel('time/s');
ylabel('角度/°');
subplot(2,2,2);
plot(time,da,'r',time,da_ref,'g');
title('角速度响应曲线');
legend('角速度','角速度期望');
xlabel('time/s');
ylabel('rad/s');
subplot(2,2,3);
plot(time,dda,'r',time,dda_ref,'g');
title('角加速度曲线');
legend('角加速度','角加速度期望');
xlabel('time/s');
ylabel('rad/s^2');
subplot(2,2,4);
plot(time,u,'r');
title('系统输入曲线');
legend('U');
xlabel('time/s');
ylabel('m/s^2');

仿真结果如下:
在这里插入图片描述
这里所用到的控制参数与实际使用的参数一致,有兴趣的同学可以去开源的控制代码里查看,代码在control.c文件中

电机转速的控制

前言

在直立控制中,采用的系统输入 U \bold{U} U是电机轮子的加速度 x ¨ w \boldsymbol{\ddot{x}_{w}} x¨w,因此实现平衡车直立的关键因素就是控制电机实现我们期望的运动,对电机的转速控制具有十分重要的意义。

电机转速控制

由于不同的电机转速的转速控制方式不同,因此这篇博客仅给出转速控制的一些思路,不做仿真和模型讨论。

电机转速控制的关键是获取电机的当前转速信息,常用的传感器有编码器光电传感等。

而对于不同类型的电机采用的控制算法也不同。

  • 对于直流驱动的电机来说,通常采用增量式PID控制
  • 对于带有FOC的无刷电机来说,通常采用位置式PID控制

以上是个人经验所给出的建议,仅供参考。

无论以何种方式,在实现电机转速控制后,需要根据直立控制的解算结果,来得到当前的期望转速 x ˙ w , r e f \boldsymbol{\dot{x}_{w,ref}} x˙w,ref,即满足以下关系:
x ˙ w , r e f ( k + 1 ) = x ˙ w ( k ) + x ¨ w , r e f ( k ) ∗ T (14) \boldsymbol{\dot{x}_{w,ref}}(k+1) = \boldsymbol{\dot{x}_{w}}(k) + \boldsymbol{\ddot{x}_{w,ref}}(k) * T \tag{14} x˙w,ref(k+1)=x˙w(k)+x¨w,ref(k)T(14)
其中, T T T为离散周期, k k k为时刻序号。

最后,再将公式(14)计算得到的期望电机转速传入电机转速控制器中,即可完成整个平衡车的控制周期。即完整的控制框图为:
在这里插入图片描述

结语

实践是检验真理的唯一标准,看懂原理的同时也需要多实践。
最后再贴一下开源的代码按需自取:https://gitee.com/HaveALitttleSao/balance_car_control_code
放一下我个人调试的效果视频

  • 俯视角度

二轮平衡车调试视频——俯视视角

  • 侧面角度

二轮平衡车调试视频——侧面视角

以防有人说我把平衡车固定死造假 \doge

这篇关于【控制实践——二轮平衡车】【三】基于PID的直立控制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1003574

相关文章

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

Prometheus与Grafana在DevOps中的应用与最佳实践

Prometheus 与 Grafana 在 DevOps 中的应用与最佳实践 随着 DevOps 文化和实践的普及,监控和可视化工具已成为 DevOps 工具链中不可或缺的部分。Prometheus 和 Grafana 是其中最受欢迎的开源监控解决方案之一,它们的结合能够为系统和应用程序提供全面的监控、告警和可视化展示。本篇文章将详细探讨 Prometheus 和 Grafana 在 DevO

springboot整合swagger2之最佳实践

来源:https://blog.lqdev.cn/2018/07/21/springboot/chapter-ten/ Swagger是一款RESTful接口的文档在线自动生成、功能测试功能框架。 一个规范和完整的框架,用于生成、描述、调用和可视化RESTful风格的Web服务,加上swagger-ui,可以有很好的呈现。 SpringBoot集成 pom <!--swagge

控制反转 的种类

之前对控制反转的定义和解释都不是很清晰。最近翻书发现在《Pro Spring 5》(免费电子版在文章最后)有一段非常不错的解释。记录一下,有道翻译贴出来方便查看。如有请直接跳过中文,看后面的原文。 控制反转的类型 控制反转的类型您可能想知道为什么有两种类型的IoC,以及为什么这些类型被进一步划分为不同的实现。这个问题似乎没有明确的答案;当然,不同的类型提供了一定程度的灵活性,但

深入解析秒杀业务中的核心问题 —— 从并发控制到事务管理

深入解析秒杀业务中的核心问题 —— 从并发控制到事务管理 秒杀系统是应对高并发、高压力下的典型业务场景,涉及到并发控制、库存管理、事务管理等多个关键技术点。本文将深入剖析秒杀商品业务中常见的几个核心问题,包括 AOP 事务管理、同步锁机制、乐观锁、CAS 操作,以及用户限购策略。通过这些技术的结合,确保秒杀系统在高并发场景下的稳定性和一致性。 1. AOP 代理对象与事务管理 在秒杀商品

PostgreSQL中的多版本并发控制(MVCC)深入解析

引言 PostgreSQL作为一款强大的开源关系数据库管理系统,以其高性能、高可靠性和丰富的功能特性而广受欢迎。在并发控制方面,PostgreSQL采用了多版本并发控制(MVCC)机制,该机制为数据库提供了高效的数据访问和更新能力,同时保证了数据的一致性和隔离性。本文将深入解析PostgreSQL中的MVCC功能,探讨其工作原理、使用场景,并通过具体SQL示例来展示其在实际应用中的表现。 一、

vue2实践:el-table实现由用户自己控制行数的动态表格

需求 项目中需要提供一个动态表单,如图: 当我点击添加时,便添加一行;点击右边的删除时,便删除这一行。 至少要有一行数据,但是没有上限。 思路 这种每一行的数据固定,但是不定行数的,很容易想到使用el-table来实现,它可以循环读取:data所绑定的数组,来生成行数据,不同的是: 1、table里面的每一个cell,需要放置一个input来支持用户编辑。 2、最后一列放置两个b

【HarmonyOS】-TaskPool和Worker的对比实践

ArkTS提供了TaskPool与Worker两种多线程并发方案,下面我们将从其工作原理、使用效果对比两种方案的差异,进而选择适用于ArkTS图片编辑场景的并发方案。 TaskPool与Worker工作原理 TaskPool与Worker两种多线程并发能力均是基于 Actor并发模型实现的。Worker主、子线程通过收发消息进行通信;TaskPool基于Worker做了更多场景化的功能封装,例