ROS学习记录:用C++实现IMU航向锁定

2024-05-25 22:36

本文主要是介绍ROS学习记录:用C++实现IMU航向锁定,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

获取IMU数据的C++节点
在了解了如何获取到IMU的姿态信息(链接在上面)后,接下来尝试实现让一个节点在订阅IMU数据的时候,还能发布运动控制指令,使机器人能对姿态变化做出反应,达到一个航向锁定的效果。

一、实现步骤

在这里插入图片描述

二、开始操作

1、打开一个终端,输入cd ~/catkin_ws1/src,进入工作空间

在这里插入图片描述

2、输入 code . 打开VScode

在这里插入图片描述

3、在VScode中打开上一篇文章编写的imu_node.cpp, 上一篇文章链接已经放在开头

在这里插入图片描述

4、在imu_node.cpp中写入如下代码

#include "ros/ros.h" //包含ros头文件
#include "sensor_msgs/Imu.h"  //包含sensor_msgs/Imu消息类型头文件
#include "tf/tf.h"//用于使用TF工具,将四元素转换为欧拉角
#include "geometry_msgs/Twist.h"//引入速度消息包的头文件ros::Publisher vel_pub;//定义一个发布对象vel_pubvoid IMUCallback(sensor_msgs::Imu msg)   //IMU消息回调函数
{if(msg.orientation_covariance[0]<0)   //检查协方差,确保数据有效性return;                            //如果协方差小于0,数据无效,直接返回tf::Quaternion quaternion(            //创建四元素msg.orientation.x,              //从IMU消息中获取四元素数据msg.orientation.y,msg.orientation.z,msg.orientation.w);double roll,pitch,yaw;           //定义滚转、俯仰、偏航角tf::Matrix3x3(quaternion).getRPY(roll,pitch,yaw);// 利用TF库将四元数转换为欧拉角roll = roll*180/M_PI;       // 弧度转换为角度pitch = pitch*180/M_PI;     // 弧度转换为角度yaw = yaw*180/M_PI;         // 弧度转换为角度ROS_INFO("滚转= %.0f  俯仰= %.0f 偏航= %.0f",roll,pitch,yaw);    // 打印欧拉角double target_yaw = 90;     //设置目标偏航角double diff_angle = target_yaw-yaw;// 计算目标偏航角与当前偏航角之间的差值geometry_msgs::Twist vel_cmd;// 创建Twist类型消息对象用于发布速度指令vel_cmd.angular.z = diff_angle*0.01;// 计算角速度vel_pub.publish(vel_cmd);// 发布速度指令
}int main(int argc, char  *argv[])   // 主函数
{setlocale(LC_ALL,"");           // 设置本地区域选项ros::init(argc,argv,"imu_node");        // 初始化ROS节点ros::NodeHandle n;              // 创建节点句柄ros::Subscriber imu_sub = n.subscribe("/imu/data",10,IMUCallback); // 创建imu_sub订阅者,订阅IMU数据消息vel_pub = n.advertise<geometry_msgs::Twist>("/cmd_vel",10);//创建速度指令发布器ros::spin();// 进入自发循环,阻塞程序直至节点关闭return 0;
}

5、按CTRL+S进行保存,再按CTRL+SHIFT进行编译,编译成功

在这里插入图片描述

6、在终端中输入cd ~/catkin_ws1,进入工作空间

在这里插入图片描述

7、再输入source ./devel/setup.bash,设置ROS的环境变量,以便在当前的终端窗口中正确运行ROS软件包。

在这里插入图片描述

8、再输入roslaunch wpr_simulation wpb_simple.launch,启动机器人仿真环境

在这里插入图片描述

9、再打开一个终端,进入工作空间后输入source ./devel/setup.bash,设置环境变量

在这里插入图片描述

10、输入rosrun imu_pkg imu_node运行刚刚我们更新的节点

在这里插入图片描述

11、可以看到机器人偏航角锁定在了90度

在这里插入图片描述

12、这时因为在代码中,我们设定了目标偏航角为90度,如果想要机器人朝向其它角度可以自行修改

在这里插入图片描述

13、点这个旋转按钮,对机器人进行旋转,拖动这个蓝色的圈圈,机器人转动后,一松开鼠标,可以发现机器人会自行转回去直至目标角度90度,这便是偏航角锁定

在这里插入图片描述

ROS机器人偏航角锁定演示

14、回到节点代码,在这里加上这一句代码,给机器一个前进的速度,可以预想到,机器人会一边前进一边转弯。

在这里插入图片描述

#include "ros/ros.h" //包含ros头文件
#include "sensor_msgs/Imu.h"  //包含sensor_msgs/Imu消息类型头文件
#include "tf/tf.h"//用于使用TF工具,将四元素转换为欧拉角
#include "geometry_msgs/Twist.h"//引入速度消息包的头文件ros::Publisher vel_pub;//定义一个发布对象vel_pubvoid IMUCallback(sensor_msgs::Imu msg)   //IMU消息回调函数
{if(msg.orientation_covariance[0]<0)   //检查协方差,确保数据有效性return;                            //如果协方差小于0,数据无效,直接返回tf::Quaternion quaternion(            //创建四元素msg.orientation.x,              //从IMU消息中获取四元素数据msg.orientation.y,msg.orientation.z,msg.orientation.w);double roll,pitch,yaw;           //定义滚转、俯仰、偏航角tf::Matrix3x3(quaternion).getRPY(roll,pitch,yaw);// 利用TF库将四元数转换为欧拉角roll = roll*180/M_PI;       // 弧度转换为角度pitch = pitch*180/M_PI;     // 弧度转换为角度yaw = yaw*180/M_PI;         // 弧度转换为角度ROS_INFO("滚转= %.0f  俯仰= %.0f 偏航= %.0f",roll,pitch,yaw);    // 打印欧拉角double target_yaw = 90;     //设置目标偏航角double diff_angle = target_yaw-yaw;// 计算目标偏航角与当前偏航角之间的差值geometry_msgs::Twist vel_cmd;// 创建Twist类型消息对象用于发布速度指令vel_cmd.angular.z = diff_angle*0.01;// 计算角速度vel_cmd.linear.x = 0.1;//给机器人x轴方向一个0.1m/s的线速度vel_pub.publish(vel_cmd);// 发布速度指令
}int main(int argc, char  *argv[])   // 主函数
{setlocale(LC_ALL,"");           // 设置本地区域选项ros::init(argc,argv,"imu_node");        // 初始化ROS节点ros::NodeHandle n;              // 创建节点句柄ros::Subscriber imu_sub = n.subscribe("/imu/data",10,IMUCallback); // 创建imu_sub订阅者,订阅IMU数据消息vel_pub = n.advertise<geometry_msgs::Twist>("/cmd_vel",10);//创建速度指令发布器ros::spin();// 进入自发循环,阻塞程序直至节点关闭return 0;
}

15、CTRL+S保存后,在按CTRL+SHIFT编译,编译成功

在这里插入图片描述

16、先按CTRL+Z停止运行刚刚的节点,在重新运行节点

在这里插入图片描述

17、可以看到当拉动蓝色的圈圈后,机器人一边转一边前进

在这里插入图片描述

这篇关于ROS学习记录:用C++实现IMU航向锁定的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1002815

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand