3D 生成重建014-Bidiff使用二维和三维先验的双向扩散

2024-05-25 20:44

本文主要是介绍3D 生成重建014-Bidiff使用二维和三维先验的双向扩散,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3D 生成重建014-Bidiff使用二维和三维先验的双向扩散


文章目录

    • 0 论文工作
    • 1 论文方法
    • 2 效果

0 论文工作

大多数三维生成研究集中在将二维基础模型向上投影到三维空间中,要么通过最小化二维评分蒸馏采样(SDS)损失,要么通过对多视图数据集进行微调。由于缺乏显式的三维先验,这些方法经常导致几何异常和多视图不一致。近来研究人员试图通过直接在三维数据集上进行训练来改善三维物体的质量,其代价是生成的纹理质量较低,因为三维数据集中有限的纹理多样性。为了利用这两种方法的优势,作者提出了双向扩散(BiDiff),这是一个同时包含3D和2D的统一框架扩散过程中,二者分别服务于三维保真度和二维纹理丰富度。此外,由于一个简单的组合可能会产生不一致的生成结果,论文用bidiff把他们连接起来。
这篇论文旨在解决当前文本到三维生成方法的局限性,特别是几何异常和多视角不一致的问题,并提出一种名为 BiDiff (Bidirectional Diffusion) 的新方法,以生成高质量、细节丰富且三维一致的模型。
其实这个地方已经可以看到SyncDreamer和SyncMVD的味道了

1 论文方法

BiDiff 的核心思想是将预训练的二维和三维扩散模型结合起来,并利用双向引导机制来同步两个扩散过程,从而学习一个联合的二维和三维先验。
在这里插入图片描述
1方法概述:
混合表示: 使用 SDF (Signed Distance Field) 表示三维特征,使用多视角图像表示二维特征。
双向扩散: 分别训练一个三维扩散模型和一个二维扩散模型,并通过双向引导机制进行联合微调。
二维引导三维: 将二维扩散模型去噪后的多视角图像投影到三维空间,引导三维扩散模型的去噪过程。
三维引导二维: 将三维扩散模型去噪后的 SDF 渲染成多视角图像,引导二维扩散模型的去噪过程。
2. 优势:
高质量纹理: 利用预训练的二维扩散模型,BiDiff 可以生成比仅使用三维数据集训练的模型更丰富的纹理细节。
三维一致性: 通过双向引导机制,BiDiff 确保了生成的三维模型在不同视角下的一致性。
可控性: BiDiff 可以分别控制纹理和几何形状的生成,例如,在保持形状不变的情况下改变纹理,或在保持纹理风格不变的情况下改变形状。
高效性: 相比于基于优化的文本到三维生成方法,BiDiff 的生成速度更快。
3. 其他特点:
利用三维先验: BiDiff 使用 Shap-E 作为三维先验,并引入噪声以避免过度依赖先验模型。
与优化方法结合: BiDiff 的输出可以作为优化方法的初始化,进一步提升模型质量和效率。
4. 额外的分析:
创新性: BiDiff 的创新性主要体现在双向引导机制,它有效地将二维和三维扩散过程结合起来,并利用两个先验模型的优势。
局限性: 论文中没有与其他最新的文本到三维生成方法进行详细的比较,例如DreamFusion, ProlificDreamer等。
未来方向: 可以探索更强大的二维和三维扩散模型,以及更有效的引导机制,进一步提升生成质量和效率。

2 效果

在这里插入图片描述

这篇关于3D 生成重建014-Bidiff使用二维和三维先验的双向扩散的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1002580

相关文章

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

浅析Rust多线程中如何安全的使用变量

《浅析Rust多线程中如何安全的使用变量》这篇文章主要为大家详细介绍了Rust如何在线程的闭包中安全的使用变量,包括共享变量和修改变量,文中的示例代码讲解详细,有需要的小伙伴可以参考下... 目录1. 向线程传递变量2. 多线程共享变量引用3. 多线程中修改变量4. 总结在Rust语言中,一个既引人入胜又可

golang1.23版本之前 Timer Reset方法无法正确使用

《golang1.23版本之前TimerReset方法无法正确使用》在Go1.23之前,使用`time.Reset`函数时需要先调用`Stop`并明确从timer的channel中抽取出东西,以避... 目录golang1.23 之前 Reset ​到底有什么问题golang1.23 之前到底应该如何正确的

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@