算法打卡 Day13(栈与队列)-滑动窗口最大值 + 前 K 个高频元素 + 总结

本文主要是介绍算法打卡 Day13(栈与队列)-滑动窗口最大值 + 前 K 个高频元素 + 总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • Leetcode 239-滑动窗口最大值
    • 题目描述
    • 解题思路
  • Leetcode 347-前 K 个高频元素
    • 题目描述
    • 解题思路
  • 栈与队列总结

Leetcode 239-滑动窗口最大值

题目描述

https://leetcode.cn/problems/sliding-window-maximum/description/

在这里插入图片描述

解题思路

在本题中我们使用自定义的单调队列来实现:

pop:如果窗口移除的元素 value 等于单调队列的出口元素,那么队列弹出元素,否则不进行任何操作

push:如果 push 的元素 value 大于入口元素的数值,那么就将队列入口的元素弹出,直到 push 元素的数值小于队列入口元素的数值为止

返回当前窗口的最大值:调用 que.front()

class Solution {
private:class MyQueue {public:deque<int> que; //使用deque实现单调队列void pop(int value) {if (!que.empty() && value == que.front()) {que.pop_front();}}void push(int value) {while (!que.empty() && value > que.back()) {que.pop_back();}que.push_back(value);}int front() {return que.front();}};
public:vector<int> maxSlidingWindow(vector<int>& nums, int k) {MyQueue que;vector<int> result;for (int i = 0; i < k; i++) {que.push(nums[i]);}result.push_back(que.front());for (int i = k; i < nums.size(); i++) {que.pop(nums[i - k]);que.push(nums[i]);result.push_back(que.front());}return result;}
};

Leetcode 347-前 K 个高频元素

题目描述

https://leetcode.cn/problems/top-k-frequent-elements/description/

在这里插入图片描述

解题思路

这道题目需要解决三个部分的问题:

1. 统计元素的出现频率:
我们可以使用 unordered_map 来解决,其中 key 表示元素的值,value 表示值出现的次数
2. 对频率进行排序:
使用优先级队列,其是一个披着队列外衣的堆。优先级队列对外接口是从队头取元素,从队尾添加元素,其内部的元素自动依照元素的权值排列。优先级队列缺省情况下 priority_queue 利用 max-heap 大顶堆完成对元素的排列,大顶堆是以 vector 为表现形式的完全二叉树。

堆是完全二叉树,树中的每个结点都不小于(或不大于)其左右孩子的值。父亲结点大于等于左右孩子的是大顶堆,小于等于左右孩子的是小顶堆。

选用优先级队列而不是快排:我们只需要报告前 K 个高频元素而不是全部元素,因此只需要维护 K 个有序序列即可,当 n 非常大时,这样的方法可以降低时间复杂度。

使用小顶堆而不是大顶堆:因为要统计最大前 K 个元素,如果选用大顶堆会将最大的元素弹出不符合要求,而使用小顶堆可以每次将最小的元素弹出,最后小顶堆中积累的才是前 K 个最大元素。

3. 找出前 K 个高频元素

class Solution {
public://小顶堆class mycomparison{public:bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {return lhs.second > rhs.second;}};vector<int> topKFrequent(vector<int>& nums, int k) {//统计元素出现的频率unordered_map<int, int>map;for (int i = 0; i < nums.size(); i++) {map[nums[i]]++;}//根据频率进行排序//定义一个小顶堆,大小为kpriority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pri_que;//用固定大小为k的小顶堆,扫描所有频率的数值for (unordered_map<int, int>::iterator it = map.begin(); it != map.end(); it++) {pri_que.push(*it);if (pri_que.size() > k) {//如果堆的大小大于k,则从队列弹出pri_que.pop();}}//找出前k个高频元素,小顶堆先弹出最小的,所以使用倒序输出数组vector<int> result(k);for (int i = k - 1; i >= 0; i--) {result[i] = pri_que.top().first;pri_que.pop();}return result;}};

栈与队列总结

栈和队列是容器适配器,底层容器使用不同的容器,那么栈内数据在内存中的分布就不一定连续。
在缺省状况下,栈和队列的默认底层容器时 deque,其内存分布不连续。

递归的实现是栈:每一次递归调用都会把函数的局部变量、参数值和返回地址等压入调用栈中,然后递归返回的时候,从栈顶弹出上一次递归的各项参数,所以这就是递归为什么可以返回上一层位置的原因。

这篇关于算法打卡 Day13(栈与队列)-滑动窗口最大值 + 前 K 个高频元素 + 总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1002530

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

java常见报错及解决方案总结

《java常见报错及解决方案总结》:本文主要介绍Java编程中常见错误类型及示例,包括语法错误、空指针异常、数组下标越界、类型转换异常、文件未找到异常、除以零异常、非法线程操作异常、方法未定义异常... 目录1. 语法错误 (Syntax Errors)示例 1:解决方案:2. 空指针异常 (NullPoi

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

C++常见容器获取头元素的方法大全

《C++常见容器获取头元素的方法大全》在C++编程中,容器是存储和管理数据集合的重要工具,不同的容器提供了不同的接口来访问和操作其中的元素,获取容器的头元素(即第一个元素)是常见的操作之一,本文将详细... 目录一、std::vector二、std::list三、std::deque四、std::forwa

Java反转字符串的五种方法总结

《Java反转字符串的五种方法总结》:本文主要介绍五种在Java中反转字符串的方法,包括使用StringBuilder的reverse()方法、字符数组、自定义StringBuilder方法、直接... 目录前言方法一:使用StringBuilder的reverse()方法方法二:使用字符数组方法三:使用自

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Python依赖库的几种离线安装方法总结

《Python依赖库的几种离线安装方法总结》:本文主要介绍如何在Python中使用pip工具进行依赖库的安装和管理,包括如何导出和导入依赖包列表、如何下载和安装单个或多个库包及其依赖,以及如何指定... 目录前言一、如何copy一个python环境二、如何下载一个包及其依赖并安装三、如何导出requirem

Spring Boot整合消息队列RabbitMQ的实现示例

《SpringBoot整合消息队列RabbitMQ的实现示例》本文主要介绍了SpringBoot整合消息队列RabbitMQ的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录RabbitMQ 简介与安装1. RabbitMQ 简介2. RabbitMQ 安装Spring