Keras深度学习框架基础第二讲:层接口(layers API)第二部分“基本层类”

本文主要是介绍Keras深度学习框架基础第二讲:层接口(layers API)第二部分“基本层类”,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、layer 类

典型的layer类如下

keras.layers.Layer(activity_regularizer=None,trainable=True,dtype=None,autocast=True,name=None,**kwargs
)

这是一个所有层都继承的基类。

一个层是一个可调用的对象,它接受一个或多个张量作为输入,并输出一个或多个张量。它涉及计算,这些计算在call()方法中定义,并且有一个状态(权重变量)。状态可以在以下两种方式中创建:

  • __init__()方法中,例如通过self.add_weight()
  • 在可选的build()方法中,这个方法会在第一次调用该层的__call__()时被调用,并提供输入的形状,这些形状可能在初始化时未知。

层是递归可组合的:如果你将一个层实例作为另一个层的属性,外部层将开始跟踪内部层创建的权重。嵌套层应该在__init__()方法或build()方法中实例化。

用户只需实例化一个层,然后将其当作可调用的对象来使用。

参数

  • trainable: 布尔值,表示该层的变量是否应该是可训练的。
  • name: 字符串,表示层的名称。
  • dtype:层的计算和权重的数据类型。也可以是一个keras.DTypePolicy,它允许计算和权重的数据类型不同。默认为None。如果为None,则使用keras.config.dtype_policy(),这通常是一个float32策略,除非通过keras.config.set_dtype_policy()设置为不同的值。

属性

  • name: 层的名称(字符串)。
  • dtype: 层权重的数据类型。是layer.variable_dtype的别名。
  • variable_dtype: 层权重的数据类型。
  • compute_dtype:层计算的数据类型。层会自动将输入转换为这个数据类型,从而使得计算和输出也在这个数据类型下。当使用混合精度与keras.DTypePolicy时,这可能与variable_dtype不同。
  • trainable_weights: 应在反向传播中包括的变量列表。
  • non_trainable_weights:不应在反向传播中包括的变量列表。
  • weights:trainable_weightsnon_trainable_weights列表的合并(按此顺序)。
  • trainable:该层是否应该被训练(布尔值),即其潜在的可训练权重是否应作为layer.trainable_weights的一部分返回。
  • input_spec: 可选的(一组)InputSpec对象,指定层可以接受的输入的约束。

推荐Layer的子类实现以下方法

  • __init__(self): 定义自定义层属性,并使用add_weight()或其他状态创建不依赖于输入形状的层权重。
  • build(self, input_shape):
    此方法可用于创建依赖于输入形状(s)的权重,使用add_weight()或其他状态。当__call__()被调用时(如果层尚未被构建),它将自动调用build()来构建层。
  • call(self, *args, **kwargs):
    在确保build()已被调用后,在__call__()中被调用。call()方法执行将层应用于输入参数的逻辑。在call()中,你可以选择性地使用两个保留的关键字参数:1. training(布尔值,表示调用是否处于推理模式或训练模式)。2. mask(布尔张量,编码输入中屏蔽的时间步,例如在RNN层中使用)。该方法的一个典型签名是call(self, inputs),如果用户需要,还可以添加trainingmask
  • get_config(self):返回一个字典,包含用于初始化此层的配置。如果字典的键与__init__()中的参数不同,则还需要重写from_config(self)方法。此方法在保存层或包含此层的模型时使用。

示例
以下是一个基础示例,演示了一个包含两个变量w和b的层,它实现了y = w * x + b的计算。这个示例展示了如何实现build()和call()方法,以及如何将变量设置为层的属性以跟踪为层的权重(在layer.weights中)。

class SimpleDense(Layer):def __init__(self, units=32):super().__init__()self.units = units# Create the state of the layer (weights)def build(self, input_shape):self.kernel = self.add_weight(shape=(input_shape[-1], self.units),initializer="glorot_uniform",trainable=True,name="kernel",)self.bias = self.add_weight(shape=(self.units,),initializer="zeros",trainable=True,name="bias",)# Defines the computationdef call(self, inputs):return ops.matmul(inputs, self.kernel) + self.bias# Instantiates the layer.
linear_layer = SimpleDense(4)# This will also call `build(input_shape)` and create the weights.
y = linear_layer(ops.ones((2, 2)))
assert len(linear_layer.weights) == 2# These weights are trainable, so they're listed in `trainable_weights`:
assert len(linear_layer.trainable_weights) == 2

当提到除了通过反向传播在训练过程中更新的可训练权重之外,层还可以具有非可训练权重。这些权重意味着在call()方法调用期间需要手动更新。以下是一个示例层,它计算其输入的累积和(running sum):

class ComputeSum(Layer):def __init__(self, input_dim):super(ComputeSum, self).__init__()# Create a non-trainable weight.self.total = self.add_weight(shape=(),initializer="zeros",trainable=False,name="total",)def call(self, inputs):self.total.assign(self.total + ops.sum(inputs))return self.totalmy_sum = ComputeSum(2)
x = ops.ones((2, 2))
y = my_sum(x)assert my_sum.weights == [my_sum.total]
assert my_sum.non_trainable_weights == [my_sum.total]
assert my_sum.trainable_weights == []

weights属性

keras.layers.Layer.weights

层的所有权重变量的列表。

与 layer.variables 不同,这排除了度量状态和随机种子。

在 TensorFlow 的 Keras API 中,layer.weights 是一个常用的属性,它返回构成层权重的所有变量的列表。这些权重变量是在训练过程中通过反向传播进行更新的。而 layer.variables 属性则包括了层中的所有变量,不仅限于权重,还包括度量状态(例如用于计算损失或准确率的变量)和可能用于初始化层的随机种子等。

因此,当您想要获取并操作层的权重时,通常使用 layer.weights 而不是 layer.variables

trainable_weights属性

keras.layers.Layer.trainable_weights

层的所有可训练权重变量的列表。

这些是在训练过程中由优化器更新的权重。

在TensorFlow的Keras框架中,当你创建一个神经网络层时,该层可能包含多个权重变量。这些权重变量中的一部分是可训练的,意味着在训练模型(即通过反向传播更新权重以最小化损失函数)时,它们会被优化器(如Adam、SGD等)更新。layer.trainable_weights属性返回的就是这些可训练权重变量的列表。
non_trainable_weights属性

keras.layers.Layer.non_trainable_weights

层的所有非可训练权重变量的列表。

这些是在训练过程中不应由优化器更新的权重。与 layer.non_trainable_variables 不同,这排除了度量状态和随机种子。

在TensorFlow的Keras框架中,一个层可能包含一些权重变量,这些变量在训练过程中不应被优化器更新。这些权重变量通常用于存储一些固定的参数或状态,如批量归一化层中的运行均值和方差。layer.non_trainable_weights属性返回的就是这些非可训练权重变量的列表。注意,与layer.non_trainable_variables不同,这个列表仅包含权重变量,而不包括度量状态或随机种子等其他非权重变量。

2、add_weight方法

Layer.add_weight(shape=None,initializer=None,dtype=None,trainable=True,autocast=True,regularizer=None,constraint=None,aggregation="mean",name=None,
)

参数说明

shape:变量的形状元组。必须完全定义(没有None条目)。如果未指定,则默认为()(即标量)。

initializer:用于填充初始变量值的初始化器对象,或者是内置初始化器的字符串名称(例如"random_normal")。如果未指定,对于浮点变量默认为"glorot_uniform",对于其他所有类型(例如int, bool)则默认为"zeros"。

dtype:要创建的变量的数据类型,例如"float32"。如果未指定,则默认为层的变量数据类型(如果层也未指定,则默认为"float32")。

trainable:布尔值,指示该变量是否应通过反向传播进行训练,或者其更新是否由人工管理。默认为True。

autocast:布尔值,指示在访问变量时是否自动进行类型转换。默认为True。

regularizer:正则化器对象,用于在权重上应用惩罚项。这些惩罚项在优化过程中被添加到损失函数中。默认为None。

constraint:约束对象,在优化器更新后应用于变量,或者是内置约束的字符串名称。默认为None。

aggregation:字符串,可选值为’mean’、‘sum’、‘only_first_replica’。为变量添加注解,表示在编写自定义数据并行训练循环时,应使用哪种多副本聚合类型。

name:变量的字符串名称。对于调试很有用。

trainable属性

keras.layers.Layer.trainable

可设置的布尔值,表示此层是否应该可训练。

3、get_weights方法

Layer.get_weights()

返回层的权重值存入NumPy数组的列表。

4 、set_weights方法

Layer.set_weights(weights)

通过NumPy数组的列表设置层的权重值。

5、get_config方法

Model.get_config()

返回对象的配置。

对象的配置是一个Python字典(可序列化),包含了重新实例化该对象所需的信息。

6、add_loss方法

Layer.add_loss(loss)

可以在call()方法内部调用以添加一个标量损失。

在Keras的自定义层或模型中,有时我们可能需要在前向传播(即call()方法)中直接计算某些损失。例如,在正则化层中,我们可能想要根据层的权重或输出计算一个损失项。为了在训练过程中包含这个损失,我们通常会使用add_loss()方法。

add_loss()方法允许你在call()方法内部添加一个标量损失,这个损失将在反向传播时被考虑进去。这通常用于实现自定义的正则化、约束或其他需要在前向传播中计算的损失项。

class MyLayer(Layer):...def call(self, x):self.add_loss(ops.sum(x))return x

losses属性

keras.layers.Layer.losses

add_loss、正则化器和子层中获取的标量损失列表。

在Keras中,当您使用add_loss方法在层或模型中添加损失时,这些损失会被收集起来并在训练过程中被考虑。同样,如果层或模型有正则化器(如权重衰减),那么这些正则化器产生的损失也会被添加到损失列表中。此外,如果层有子层(即嵌套在其他层中的层),那么这些子层的损失也会被包含在内。

这些标量损失在训练过程中会被累加,并用于计算总损失,然后用于反向传播以更新模型的权重。

注意:这些损失通常是在call方法或其他层/模型的方法中通过add_loss方法添加的,并且是在模型编译后、训练开始前计算的。在模型编译之前,losses列表可能为空或只包含由正则化器产生的损失。

这篇关于Keras深度学习框架基础第二讲:层接口(layers API)第二部分“基本层类”的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1002209

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

MyBatis-Flex BaseMapper的接口基本用法小结

《MyBatis-FlexBaseMapper的接口基本用法小结》本文主要介绍了MyBatis-FlexBaseMapper的接口基本用法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具... 目录MyBATis-Flex简单介绍特性基础方法INSERT① insert② insertSelec

Spring排序机制之接口与注解的使用方法

《Spring排序机制之接口与注解的使用方法》本文介绍了Spring中多种排序机制,包括Ordered接口、PriorityOrdered接口、@Order注解和@Priority注解,提供了详细示例... 目录一、Spring 排序的需求场景二、Spring 中的排序机制1、Ordered 接口2、Pri

一分钟带你上手Python调用DeepSeek的API

《一分钟带你上手Python调用DeepSeek的API》最近DeepSeek非常火,作为一枚对前言技术非常关注的程序员来说,自然都想对接DeepSeek的API来体验一把,下面小编就来为大家介绍一下... 目录前言免费体验API-Key申请首次调用API基本概念最小单元推理模型智能体自定义界面总结前言最

Idea实现接口的方法上无法添加@Override注解的解决方案

《Idea实现接口的方法上无法添加@Override注解的解决方案》文章介绍了在IDEA中实现接口方法时无法添加@Override注解的问题及其解决方法,主要步骤包括更改项目结构中的Languagel... 目录Idea实现接China编程口的方法上无法添加@javascriptOverride注解错误原因解决方