白鹭群优化算法,原理详解,MATLAB代码免费获取

2024-05-25 16:44

本文主要是介绍白鹭群优化算法,原理详解,MATLAB代码免费获取,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

白鹭群优化算法(Egret Swarm Optimization Algorithm,ESOA)是一种受自然启发的群智能优化算法。该算法从白鹭和白鹭的捕食行为出发,由三个主要部分组成:坐等策略、主动策略和判别条件。将ESOA算法与粒子群算法(PSO)、遗传算法(GA)、差分进化算法(DE)、等算法在36个基准函数和3个工程问题上的性能进行了比较。结果证明了该方法的有效性和鲁棒性。

abe9ca934043c3686efc758ff71f3d57.png

该成果于2022年发表在计算机领域三区期刊Biomimetics上,目前在谷歌学术上被引率39次。

a452786683336efd83dd40aba63759a9.png

大多数白鹭栖息在沿海岛屿、海岸、河口和河流,以及靠近海岸的湖泊、池塘、溪流、稻田和沼泽。白鹭通常是成对的,或者是成群的。由于飞行时能量消耗很大,决定捕食通常需要彻底检查飞行轨迹,以确保通过食物的位置获得的能量比飞行中消耗的能量要多。总体而言,采用积极搜索策略的大白鹭会平衡高能量消耗以获得更大的潜在回报,而采用坐等策略的雪白鹭则会平衡低能量消耗以获得更小但更可靠的利润。

1、算法原理

(1)数学模型与算法

ESOA受白鹭的守株待兔策略和大白鹭的攻击策略的启发,结合了这两种策略的优点,构建了相应的数学模型来量化行为。如图所示,ESOA是一个并行算法,有三个基本组成部分:坐等策略,积极策略和判别条件。一个白鹭小队中有三只白鹭,白鹭A采用引导前进机制,白鹭B和白鹭C分别采用随机行走和包围机制。每一部分的细节如下。

c60d84e8ccf5c87fe6a9727a20c4cfb6.jpeg

Egret Squad的各个角色和搜索首选项如图所示。白鹭A将估计下降平面并基于平面参数的梯度进行搜索,白鹭B执行全局随机漫游,白鹭C基于更好的白鹭的位置选择性地进行探索。通过这种方式,ESOA在开发和勘探方面将更加平衡,并能够快速搜索可行的解决方案。与梯度下降不同,ESOA在梯度估计中引用了历史信息和随机性,这意味着它不太可能落入优化问题的鞍点。ESOA也不同于其他的元启发式算法,通过估计优化问题的切平面,使快速下降到当前的最优点。

73e01b1a088a3d5986675413cda4fb6f.png

(2)坐等策略

观测方程:假设第i个白鹭小队的位置为Xi ∈ Rn,n为问题的维数,A(n)为白鹭对当前位置可能存在的猎物的估计方法。是对当前位置猎物的估计,

则估计方法可以被参数化为,

其中wi ∈ Rn是估计方法的权重。误差ei可以描述为,

同时,ω i的实际梯度ω gi ∈ Rn可以通过对误差方程(3)的wi进行偏导数来恢复,其方向为d ω i。

下图展示了白鹭的跟随行为,其中白鹭在捕食过程中参考了更好的白鹭,借鉴了它们估计猎物行为的经验并融入了自己的想法。dh,i ∈ Rn是小队最佳位置的方向修正,而dg,i ∈ Rn是所有小队最佳位置的方向修正。

3ad63a2dceaa633ed27a7892aad1bcc4.png

积分梯度gi ∈ Rn可以表示如下,并且rh ∈ [0,0.5),rg ∈ [0,0.5):

这里应用自适应权重更新方法[76],β1为0.9,β2为0.99:

根据白鹭A对当前情况的判断,下一个采样位置xa,i可以描述为,

其中t和tmax是当前迭代时间和最大迭代时间,而hop是解空间的下界和上界之间的差距。stepa ∈(0,1]是白鹭A的步长因子。ya,i是xa,i的适合度。

(3)积极的战略

白鹭B倾向于随机搜索猎物,其行为可描述如下,

其中rb,i是(− π/2,π/2)中的随机数,xb,i是白鹭B的预期下一个位置,yb,i是适应度。

白鹭C喜欢攻击性地追逐猎物,因此使用包围机制作为其位置的更新方法:

(4)判别条件

在白鹭小队的每个成员都决定了自己的计划后,小队会选择最佳方案并一起采取行动。xs,i是第i个白鹭小队的解矩阵:

29695d6a1480f94be1b97e3a4e2776ce.png

如果最小值ys,i优于当前适应度yi,则白鹭队接受该选择。或者随机数r∈(0,1)小于0.3,这意味着有30%的可能性接受更差的方案。

ESOA对应的算法的伪代码如下所示。

bb977bd812c0a14b55380f1a24a73644.png

2、结果展示

20093d1982a7b239205277a12036e34a.png

da91a4a8f51b37c484167fd57b5b5ecf.png

87b35e8d8606dfcae8cbba7ab6bddfc9.png

3、MATLAB核心代码

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [y_global_best, x_global_best, Convergence_curve]=ESOA(SearchAgents_no, Max_iter, lb, ub, dim, fobj)
func = fobj;
beta1 = 0.9;
beta2 = 0.99;
x=initialization(SearchAgents_no, dim, ub, lb);
Convergence_curve=zeros(1,Max_iter);
w = random('Uniform', -1, 1, SearchAgents_no, dim);
%g = random('Uniform', -1, 1, SearchAgents_no, dim);
m = zeros(SearchAgents_no, dim);
v = zeros(SearchAgents_no, dim);
y = zeros(SearchAgents_no,1);
for i=1:SearchAgents_noy(i) = func(x(i,:));
end
p_y = y;
x_hist_best = x;
g_hist_best = x;
y_hist_best = ones(SearchAgents_no)*inf;
x_global_best = x(1, :);
g_global_best = zeros(1, dim);
y_global_best = func(x_global_best);
hop = ub - lb;
l=0;% Loop counter
% Main loop
while l<Max_iterfor i=1:SearchAgents_nop_y(i) = sum(w(i, :) .* x(i, :));p = p_y(i) - y(i);g_temp = p.*x(i, :);% Indivual Directionp_d = x_hist_best(i, :) - x(i, :);f_p_bias = y_hist_best(i) - y(i);p_d = p_d .* f_p_bias;p_d = p_d ./ ((sum(p_d)+eps).*(sum(p_d)+eps));d_p = p_d + g_hist_best(i, :);% Group Directionc_d = x_global_best - x(i, :);f_c_bias = y_global_best - y(i);c_d = c_d .* f_c_bias;c_d = c_d ./ ((sum(c_d)+eps).*(sum(c_d)+eps));d_g = c_d + g_global_best;% Gradient Estimationr1 = rand(1, dim);r2 = rand(1, dim);g = (1 - r1 - r2).*g_temp + r1 .* d_p + r2 .* d_g;g = g ./ (sum(g) + eps);m(i,:) = beta1.*m(i,:)+(1-beta1).*g;v(i,:) = beta2*v(i,:)+(1-beta2)*g.^2;w(i,:) = w(i,:) - m(i,:)/(sqrt(v(i,:))+eps);% Advice Forwardx_o = x(i, :) + exp(-l/(0.1*Max_iter)) * 0.1 .* hop .* g;Flag4ub=x_o>ub;Flag4lb=x_o<lb;x_o = (x_o.*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;y_o = func(x_o);% Random Searchr = random('Uniform', -pi/2, pi/2, 1, dim);x_n = x(i, :) + tan(r) .* hop/(1 + l) * 0.5;Flag4ub=x_n>ub;Flag4lb=x_n<lb;x_n = (x_n.*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;y_n = func(x_n);% Encircling Mechanismd = x_hist_best(i, :) - x(i, :);d_g = x_global_best - x(i, :);r1 = rand(1, dim);r2 = rand(1, dim);x_m = (1-r1-r2).*x(i, :) + r1.*d + r2.*d_g;Flag4ub=x_m>ub;Flag4lb=x_m<lb;x_m = (x_m.*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;y_m = func(x_m);% Discriminant Conditionx_summary = [x_m; x_n; x_o];y_summary = [y_m, y_n, y_o];y_summary(isnan(y_summary)) = inf;ind = y_summary==min(y_summary);y_i = min(y_summary);x_i = x_summary(ind, :);x_i = x_i(1, :);if y_i < y(i)y(i) = y_i;x(i, :) = x_i;if y_i < y_hist_best(i)y_hist_best(i) = y_i;x_hist_best(i, :) = x_i;g_hist_best(i, :) = g_temp;if y_i < y_global_besty_global_best = y_i;x_global_best = x_i;g_global_best = g_temp;endendelseif rand()<0.3y(i) = y_i;x(i, :) = x_i;endendend    
l=l+1;    
fprintf("%d, %f\n", l, y_global_best)
Convergence_curve(l) = y_global_best;
end
end

参考文献

[1]Chen Z, Francis A, Li S, et al. Egret swarm optimization algorithm: an evolutionary computation approach for model free optimization[J]. Biomimetics, 2022, 7(4): 144.

完整代码获取

后台回复关键词:

TGDM833

这篇关于白鹭群优化算法,原理详解,MATLAB代码免费获取的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1002063

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘