其它高阶数据结构⑦_Skiplist跳表_概念+实现+对比

2024-05-25 13:52

本文主要是介绍其它高阶数据结构⑦_Skiplist跳表_概念+实现+对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1. Skiplist跳表的概念

2. Skiplist跳表的效率

3. Skiplist跳表的实现

3.1 力扣1206. 设计跳表

3.2 Skiplist的初始化和查找

3.3 Skiplist的增加和删除

3.4 Skiplist的源码和OJ测试

4. 跳表和平衡搜索树/哈希表的对比

本篇完。


1. Skiplist跳表的概念

        skiplist是由美国计算机科学家William Pugh(威廉 普格)于1989年发明。skiplist本质上是一种查找结构,用于解决算法中的查找问题,跟平衡搜索树和哈希表的价值是 一样的,可以作为key或者key/value的查找模型。skiplist,顾名思义,首先它是一个list。实际上,它是在有序链表的基础上发展起来的。我们知道在对一个有序链表进行查找,它的时间复杂度为O(N)。

William Pugh开始了他的优化思路:

假如我们每相邻两个节点升高一层,增加一个指针,让指针指向下下个节点,如下图所示:

        这样新增的一层指针通过连接可以形成新的链表,它包含了整个链表节点的一半,由此需要在这一层进行比较、筛除的个数也就降低了一半。

        以此类推,继续增加一层指针,新链表的节点数下降,查找的效率自然而然也就提高了。按照上述每增加一层,节点数就少一半,其查找的过程类似于二分查找,使得查找的时间复杂度可以降低到O(logN)。

        上述查找的前提是一个有序的链表。无论是对其中的链表新增节点,还是删除节点,都可能打乱原有维持的指针连接,从而导致跳表失效。如果要维持这种对应关系,就必须把新插入的节点后面的所有节点(也包括新插入的节点)重新进行调整,这会让时间复杂度重新退化成O(N)。

        随机层数: 为了避免这种情况,skiplist的设计不再严格要求对应比例关系,而是插入一个节点的时候随机出一个层数。这样每次插入和删除都不需要考虑其他节点的层数。


2. Skiplist跳表的效率

        那么skiplist在引入随机层数后,如何保证其查找效率呢?首先,这个随机层数会有一个限制,这里把它叫做maxLevel,其次会设置一个多增加一层的概率p。那么计算这个随机层数的伪代码如下图:

在Redis的skiplist实现中,这两个参数的取值为:p = 1/4,maxLevel = 32。

        根据前面randomLevel()的伪码,很容易看出,产生越高的节点层数,概率越低。定量的分析如下:

  • 节点层数至少为1。而大于1的节点层数,满足一个概率分布。
  • 节点层数恰好等于1的概率为1-p。
  • 节点层数大于等于2的概率为p,而节点层数恰好等于2的概率为p(1-p)。
  • 节点层数大于等于3的概率为p^2,而节点层数恰好等于3的概率为p^2*(1-p)。
  • 节点层数大于等于4的概率为p^3,而节点层数恰好等于4的概率为p^3*(1-p)。
  • ......

最终可以得到这样一个数学式,用于计算一个节点的平均层数:

有了这个公式,我们可以很容易计算出:

当 p =  1/2 时: 每个节点所包含的平均指针数目为2。

当 p =  1/4 时: 每个节点所包含的平均指针数目为1.33。                 

        至于跳表的平均时间复杂度为O(logN)的证明,这推导的过程较为复杂,下面的两篇中英文章有详细讲解:

铁蕾大佬的博客:Redis内部数据结构详解(6)——skiplist - 铁蕾的个人博客

William_Pugh大佬的论文:http://ftp.cs.umd.edu/pub/skipLists/skiplists.pdf


3. Skiplist跳表的实现

力扣上有一道实现跳表的题,可以在这上面完成跳表的测试:

3.1 力扣1206. 设计跳表

1206. 设计跳表

难度 困难

不使用任何库函数,设计一个 跳表 。

跳表 是在 O(log(n)) 时间内完成增加、删除、搜索操作的数据结构。跳表相比于树堆与红黑树,其功能与性能相当,并且跳表的代码长度相较下更短,其设计思想与链表相似。

例如,一个跳表包含 [30, 40, 50, 60, 70, 90] ,然后增加 8045 到跳表中,以下图的方式操作:

跳表中有很多层,每一层是一个短的链表。在第一层的作用下,增加、删除和搜索操作的时间复杂度不超过 O(n)。跳表的每一个操作的平均时间复杂度是 O(log(n)),空间复杂度是 O(n)

了解更多 : 跳表 - OI Wiki

在本题中,你的设计应该要包含这些函数:

  • bool search(int target) : 返回target是否存在于跳表中。
  • void add(int num): 插入一个元素到跳表。
  • bool erase(int num): 在跳表中删除一个值,如果 num 不存在,直接返回false. 如果存在多个 num ,删除其中任意一个即可。

注意,跳表中可能存在多个相同的值,你的代码需要处理这种情况。

示例 1:

输入
["Skiplist", "add", "add", "add", "search", "add", "search", "erase", "erase", "search"]
[[], [1], [2], [3], [0], [4], [1], [0], [1], [1]]
输出
[null, null, null, null, false, null, true, false, true, false]解释
Skiplist skiplist = new Skiplist();
skiplist.add(1);
skiplist.add(2);
skiplist.add(3);
skiplist.search(0);   // 返回 false
skiplist.add(4);
skiplist.search(1);   // 返回 true
skiplist.erase(0);    // 返回 false,0 不在跳表中
skiplist.erase(1);    // 返回 true
skiplist.search(1);   // 返回 false,1 已被擦除

提示:

  • 0 <= num, target <= 2 * 10^4
  • 调用searchadd,  erase操作次数不大于 5 * 10^4 
class Skiplist {
public:Skiplist() {}bool search(int target) {}void add(int num) {}bool erase(int num) {}
};/*** Your Skiplist object will be instantiated and called as such:* Skiplist* obj = new Skiplist();* bool param_1 = obj->search(target);* obj->add(num);* bool param_3 = obj->erase(num);*/

3.2 Skiplist的初始化和查找

Skiplist的初始化:

        跳表不仅仅是要存储数据 _data,还需要有next指针,当然这些next指针也不止一个 这取决于当前节点的层数。

结合此图就可以知道next指针应该在一个数组中:

class SkiplistNode
{
public:int _val;vector<SkiplistNode*> _nextV;SkiplistNode(int val, int level):_val(val), _nextV(level, nullptr){}
};class Skiplist
{
private:typedef SkiplistNode Node;Node* _head;size_t _maxLevel = 32;double _p = 0.5;
public:Skiplist(){_head = new SkiplistNode(-1, 1); // 头节点,层数是1}
}

Skiplist的search查找:

        查找的过程:查找是要和下一个节点的值相比,并不是和当前节点的值相比一开始cur在哨兵位头节点的最高层 head,开始进行比较。设要查找的值为target,如果下一个节点为空或者下一个节点的值比target大,那么cur需要向下一层走,如果下一个节点的值比targe小,那么cur向右走。重复上述过程,直至找到或者没找到(没找到的话,cur会到第-1层,层数是从第0层开始的)

bool search(int target){Node* cur = _head;int level = _head->_nextV.size() - 1;while (level >= 0){if (cur->_nextV[level] && cur->_nextV[level]->_val < target){cur = cur->_nextV[level]; // 目标值比下一个节点值要大,向右走}else if (cur->_nextV[level] == nullptr || cur->_nextV[level]->_val > target){--level; //下一个节点是空(尾),或目标值比下一个节点值要小,向下走}else{return true;}}return false;}

3.3 Skiplist的增加和删除

Skiplist的add增加:

假设要增加17,要怎么操作?

  1. 获得这个结点的层数:RandomLevel( );
  2. 找到这个结点的前后链接关系(此过程就像查找这个结点每一层的前一个结点,后面的删除结点也需要用到,所以封装成一个FindPrevNode函数):比如查找17的话就是prev_val < 17 < next_val,需要从头结点开始找,记录每一层的前一个指针。
	Skiplist(){srand(time(nullptr)); // 构造函数种下随机数种子_head = new SkiplistNode(-1, 1); // 头节点,层数是1}vector<Node*> FindPrevNode(int num){Node* cur = _head;int level = _head->_nextV.size() - 1;vector<Node*> prevV(level + 1, _head); // 插入位置每一层前一个节点指针while (level >= 0){if (cur->_nextV[level] && cur->_nextV[level]->_val < num){cur = cur->_nextV[level]; // 目标值比下一个节点值要大,向右走}else if (cur->_nextV[level] == nullptr || cur->_nextV[level]->_val >= num){prevV[level] = cur; // 更新level层前一个--level; //下一个节点是空(尾),目标值比下一个节点值要小,向下走}}return prevV;}void add(int num){vector<Node*> prevV = FindPrevNode(num);int n = RandomLevel();Node* newnode = new Node(num, n);if (n > _head->_nextV.size()) // 如果n超过当前最大的层数,那就升高一下_head的层数{_head->_nextV.resize(n, nullptr);prevV.resize(n, _head);}for (size_t i = 0; i < n; ++i) // 链接前后节点{newnode->_nextV[i] = prevV[i]->_nextV[i];prevV[i]->_nextV[i] = newnode;}}int RandomLevel(){size_t level = 1; // rand() ->[0, RAND_MAX]之间while (rand() <= RAND_MAX * _p && level < _maxLevel){++level;}return level;}

这里的RandomLevel()是以一种巧妙的方式完成的:

        通过_p可以控制最终值产生范围的概率。如_p是0.5的话,生成的随机数小于RAND_MAX的一半才可能增加层数。


Skiplist的erase删除

删除怎么操作?假设现在要删除17:

        删除的操作和增加的操作几乎一样,通过FindPrevNode找到该结点的所有前驱结点,让所有前驱结点指向被删除结点的next即可。

	bool erase(int num){vector<Node*> prevV = FindPrevNode(num);if (prevV[0]->_nextV[0] == nullptr || prevV[0]->_nextV[0]->_val != num){return false; // 第一层下一个不是val,val不在表中}else{Node* del = prevV[0]->_nextV[0];for (size_t i = 0; i < del->_nextV.size(); i++) // del节点每一层的前后指针链接起来{prevV[i]->_nextV[i] = del->_nextV[i];}delete del;int i = _head->_nextV.size() - 1; // 如果删除最高层节点,把头节点的层数降一下while (i >= 0){if (_head->_nextV[i] == nullptr)--i;elsebreak;}_head->_nextV.resize(i + 1);return true;}}

3.4 Skiplist的源码和OJ测试

class SkiplistNode
{
public:int _val;vector<SkiplistNode*> _nextV;SkiplistNode(int val, int level):_val(val), _nextV(level, nullptr){}
};class Skiplist
{
private:typedef SkiplistNode Node;Node* _head;size_t _maxLevel = 32;double _p = 0.5;
public:Skiplist(){srand(time(nullptr)); // 构造函数种下随机数种子_head = new SkiplistNode(-1, 1); // 头节点,层数是1}bool search(int target){Node* cur = _head;int level = _head->_nextV.size() - 1;while (level >= 0){if (cur->_nextV[level] && cur->_nextV[level]->_val < target){cur = cur->_nextV[level]; // 目标值比下一个节点值要大,向右走}else if (cur->_nextV[level] == nullptr || cur->_nextV[level]->_val > target){--level; //下一个节点是空(尾),或目标值比下一个节点值要小,向下走}else{return true;}}return false;}vector<Node*> FindPrevNode(int num){Node* cur = _head;int level = _head->_nextV.size() - 1;vector<Node*> prevV(level + 1, _head); // 插入位置每一层前一个节点指针while (level >= 0){if (cur->_nextV[level] && cur->_nextV[level]->_val < num){cur = cur->_nextV[level]; // 目标值比下一个节点值要大,向右走}else if (cur->_nextV[level] == nullptr || cur->_nextV[level]->_val >= num){prevV[level] = cur; // 更新level层前一个--level; //下一个节点是空(尾),目标值比下一个节点值要小,向下走}}return prevV;}void add(int num){vector<Node*> prevV = FindPrevNode(num);int n = RandomLevel();Node* newnode = new Node(num, n);if (n > _head->_nextV.size()) // 如果n超过当前最大的层数,那就升高一下_head的层数{_head->_nextV.resize(n, nullptr);prevV.resize(n, _head);}for (size_t i = 0; i < n; ++i) // 链接前后节点{newnode->_nextV[i] = prevV[i]->_nextV[i];prevV[i]->_nextV[i] = newnode;}}int RandomLevel(){size_t level = 1; // rand() ->[0, RAND_MAX]之间while (rand() <= RAND_MAX * _p && level < _maxLevel){++level;}return level;}bool erase(int num){vector<Node*> prevV = FindPrevNode(num);if (prevV[0]->_nextV[0] == nullptr || prevV[0]->_nextV[0]->_val != num){return false; // 第一层下一个不是val,val不在表中}else{Node* del = prevV[0]->_nextV[0];for (size_t i = 0; i < del->_nextV.size(); i++) // del节点每一层的前后指针链接起来{prevV[i]->_nextV[i] = del->_nextV[i];}delete del;int i = _head->_nextV.size() - 1; // 如果删除最高层节点,把头节点的层数降一下while (i >= 0){if (_head->_nextV[i] == nullptr)--i;elsebreak;}_head->_nextV.resize(i + 1);return true;}}
};/*** Your Skiplist object will be instantiated and called as such:* Skiplist* obj = new Skiplist();* bool param_1 = obj->search(target);* obj->add(num);* bool param_3 = obj->erase(num);*/


4. 跳表和平衡搜索树/哈希表的对比

跳表和平衡搜索树的对比:

        跳表相比平衡搜索树(AVL树和红黑树)对比都可以做到遍历数据有序,时间复杂度也差不多,都是O(logN)。不过跳表与平衡搜索树相比,跳表的优势在于:

  • 跳表实现简单,容易控制。平衡树增删查改遍历都更复杂。
  • 跳表的额外空间消耗更低。平衡树节点存储每个值有三叉链,平衡因子/颜色等消耗。可是跳表可以通过p来调整每个节点的指针个数,那是个可接受的数量。

跳表和哈希表的对比:

        跳表相比哈希表而言,跳表在查找效率上更差一点。哈希表平均时间复杂度是O(1),比跳表的O(logN)快。

skiplist与哈希表相比,skiplist的优势在于:

  • 遍历数据有序。
  • skiplist空间消耗略小一点,哈希表存在链接指针和表空间消耗。
  • 哈希表在极端场景下哈希冲突高,效率下降厉害,需要红黑树补足接力。

本篇完。

高阶数据结构到这先暂告一段落了。

这篇关于其它高阶数据结构⑦_Skiplist跳表_概念+实现+对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1001693

相关文章

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu