大语言模型实战——最小化agent

2024-05-25 09:44

本文主要是介绍大语言模型实战——最小化agent,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. agent是什么

大模型拥有语言理解和推理能力后,就相当于拥有了大脑,要让模型发挥更大的潜力,就需要给它安装上手臂,让它拥有行动的能力。

而Agent就是一个将语言模型和外部工具结合起来的智能体,它使用语言模型的推理能力做出决策,再调用外部工具来完成具体的行动,并将行动结果反馈给语言模型,这样语言模型可以通过行动的结果来做出进一步的决策,直到得出结果(工作流程如下图所示)。

由上可知,一个智能体系统最少由以下几部分组成:

  1. 语言模型
  2. 工具集
  3. Agent

本文将动手搭建一个最小化的agent,下面将分别就这几部分进行展开。

2. 语言模型

首先需要一个具有functionCalling能力的语言模型,来理解用户问题,并针对问题进行思考和规划行动方案。这里使用qwen:7b作为我们的 Agent 模型。

这里和前面一篇文章RAG所用的语言模型相似。

class OllamaChat:def __init__(self, model: str = "qwen") -> None:self.model = modeldef _build_messages(self, prompt: str, content: str):……def chat(self, prompt: str, history: List[Dict], content: str) -> str:……

2.1 构造提示词

将用户的问题、历史聊天记录和系统提示词,按照语言模型的格式要求,拼成一个完整的提示词。

    def _build_messages(self, prompt: str, history: List[dict], system_prompt: str):messages = [{"role": "system", "content": system_prompt}]for item in history:messages.append({"role": "user", "content": item["prompt"]})messages.append({"role": "assistant", "content": item["response"]})messages.append({"role": "user", "content": prompt})print(f"prompt messages: {messages}")return messages

2.2 聊天对话

这里与前面RAG实现的相同,详情参考搭建纯本地迷你版RAG。

def chat(self, prompt: str, history: List[dict], meta_instruction:str ='') -> str:
import ollamaresponse = ollama.chat(model=self.model,messages=self._build_messages(prompt, history, meta_instruction),stream=True)final_response = ''for chunk in response:if type(chunk) == "str":chunk = to_json(chunk)if 'content' in chunk.get('message', {}):final_response += chunk['message']['content']history.append({"prompt": prompt, "response": final_response})return final_response, history

2. 工具

工具包括两部分信息,工具的实现和工具的使用描述。

2.1 工具封装

这里实现一个最简单的本地时间函数来作为大语言模型可以调用的工具。

def current_time():"""获取本地时间信息,返回yyyy-MM-dd HH:mm:ss格式"""timestamp = time.time()# 将时间戳转换为本地时间time_tuple = time.localtime(timestamp)return time.strftime("%Y-%m-%d %H:%M:%S", time_tuple)

2.2 工具描述

封装好工具实现后,我们需要对它进行一些描述,目的是让大语言模型知道什么时候调用此工具以及如何调用此工具。具体包括如下信息:

  • name_for_model: 用以给程序识别的工具标识。
  • name_for_human:人类可以理解的工具名称。
  • description_for_model:功能描述,工具能用来做什么。
  • parameters:工具需要的参数。
tool_config = [{'name_for_human': '当前系统时间查询','name_for_model': 'current_time','description_for_model': '当前系统时间查询是一个简单的工具,用于获取系统本地当前的时间信息。','parameters': []}
]

3. Agent

Agent是核心类,通过提示词和一定的逻辑,将外部工具整合进大语言模型推理决策的流程中,最终完成用户交给的任务。它有以下核心方法:

  • build_system_input: 构造系统提示词
  • parse_latest_plugin_call: 解析大语言模型需要调用的工具信息
  • call_plugin: 调用工具
  • text_completion:对外提供给用户调用的主方法,负责将其它三个方法的功能串联成一个自动解决问题的业务流程。
class Agent:def __init__(self, model: str = '') -> None:self.system_prompt = self.build_system_input()self.model = OllamaChat(model)def build_system_input(self):……def parse_latest_plugin_call(self, text):……def call_plugin(self, plugin_name, plugin_args):……def text_completion(self, text, history=[], max_loops=5):……

3.1 构造system-prompt

作用:根据提示词来告诉大模型可以凋用哪些工具,并且以什么样的方式输出。

Answer the following questions as best you can. You have access to the following tools:{tool_descs}Use the following format:Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
Thought: I now know the final answer
Final Answer: the final answer to the original input questionBegin!

这里的thought->Action->Action Input->Observation结构是一种典型的Reasoning(推理) 和 Action(行动)的思想,旨在使模型能够基于观察到的信息进行推理,然后采取适当行动,从而实现更高级的应用。

工具可能会有多个,我们先为每个工具定义一个给语言模型的通用描述模板,这里就简单的将工具标识、工具描述、工具参数三者以一定的格式接起来。如下:

TOOL_DESC = """{name_for_model}:  {description_for_model} Parameters: {parameters} Format the arguments as a JSON object."""

上面的系统提示词中,有tool_descs和tool_names两个占位符,我们需要用前面定义好的工具作替换:

def build_system_input(self):tool_descs, tool_names = [], []for item in tool.toolConfig:tool_descs.append(TOOL_DESC.format(**item))tool_names.append(item['name_for_model'])tool_descs = '\n\n'.join(tool_descs)tool_names = ','.join(tool_names)sys_prompt = REACT_PROMPT.format(tool_descs=tool_descs, tool_names=tool_names)return sys_prompt

这样,就能得到一个能用并完整的系统提示词,剩下的只需要用户提问题即可。

3.2 解析工具信息

LLM返回的response中可能带有工具调用信息,我们需要从中查找并解析出要调用的工具和参数。

def parse_latest_plugin_call(self, text):plugin_name, plugin_args = '', ''i = text.rfind('\nAction:')j = text.rfind('\nAction Input:')k = text.rfind('\nObservation:')if 0 <= i < j:  # If the text has `Action` and `Action input`,if k < j:  # but does not contain `Observation`,text = text.rstrip() + '\nObservation:'  # Add it back.k = text.rfind('\nObservation:')plugin_name = text[i + len('\nAction:') : j].strip()plugin_args = text[j + len('\nAction Input:') : k].strip()text = text[:k]return plugin_name, plugin_args, text

3.3 调用工具

这里只有一个工具,直接根据plugin_name调用即可。

def call_plugin(self, plugin_name, plugin_args):1tool.current_time(**plugin_args)elif plugin_name == 'local_file_search':return '\nObservation:' + tool.local_file_search(**plugin_args)

3.4 主方法

流程为:

  1. 先和模型进行第一次交互,返回一个response。
  2. 解析response中要调用的工具信息,如果不需要工具,直接返回。
  3. 否则,调用工具,并将工具返回的结果拼接模型第一次的输出上,目的是为了给模型提供前一步的上下文。
  4. 和模型进行第二次交互,语言模型根据上下文以及工具调用返回的信息来生成最终的结果。
def text_completion(self, text, history=[], max_loops=5):text = "\nQuestion:" + textresponse, his = self.model.chat(text, history, self.system_prompt)plugin_name, plugin_args, response = self.parse_latest_plugin_call(response)if not plugin_name:return response, hisresponse += self.call_plugin(plugin_name, plugin_args)response, his = self.model.chat(response, history, self.system_prompt)return response, his

4. 运行流程

启动方式:创建agent并使用agent向大语言模型下一个任务。

agent = Agent('qwen')
response, _ = agent.text_completion(text='告诉我当前系统的本地准确时间?', history=[])
print(response)

这里将详细描述下agent与大语言模型的交互过程。

1)第一次chat
用户prompt:

Question:告诉我当前系统的本地准确时间?

系统提示词:

Answer the following questions as best you can. You have access to the following tools:current_time:  当前系统时间查询是一个简单的工具,用于获取系统本地当前的时间信息。 Parameters: [] Format the arguments as a JSON object.Use the following format:Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [google_search,current_time,local_file_search]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
Thought: I now know the final answer
Final Answer: the final answer to the original input questionBegin!

语言模型的response:

Thought: 我应该使用哪个工具来获取当前系统的本地准确时间?
Action: current_time
Action Input: {}

2)工具调用
调用本地方法parse_latest_plugin_call来解析response,得到的工具信息:

plugin_name:current_time
args: {}

调用工具方法tool.current_time拿到本地时间:2024-05-24 23:02:49

3)第二次chat

将本地时间拼接成Observation得到第二次chat用户提示词输入:

Thought: 我应该使用哪个工具来获取当前系统的本地准确时间?
Action: current_time
Action Input: {}
Observation:2024-05-24 23:02:49

第二次chat的系统提示词和第一次相同,这里省略。

第二次chat的response:

Thought: 我现在可以作答了。
Final Answer: 当前系统时间是 2024-05-24 23:02:49

从第二次chat的response中得到了用户问题的答案。

这样就完成了一个最小化agent,这里主要是演示了下FunctionCalling的调用过程,它是扩展语言模型能力的关键。

作为扩展,我们可以根据需要添加多个tool,例如:

  • 搜索本地文件
  • 获取文件内容

并且可以修改agent的流程,来支持需要多次调用不同tool的复杂任务,相应的也需要更长的上下文和能力更强的语言模型,有兴趣可以尝试下。

参考资料

  1. tiny-universe
  2. 搭建纯本地迷你版RAG

这篇关于大语言模型实战——最小化agent的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1001151

相关文章

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

C语言中的数据类型强制转换

《C语言中的数据类型强制转换》:本文主要介绍C语言中的数据类型强制转换方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C语言数据类型强制转换自动转换强制转换类型总结C语言数据类型强制转换强制类型转换:是通过类型转换运算来实现的,主要的数据类型转换分为自动转换

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

C语言实现两个变量值交换的三种方式

《C语言实现两个变量值交换的三种方式》两个变量值的交换是编程中最常见的问题之一,以下将介绍三种变量的交换方式,其中第一种方式是最常用也是最实用的,后两种方式一般只在特殊限制下使用,需要的朋友可以参考下... 目录1.使用临时变量(推荐)2.相加和相减的方式(值较大时可能丢失数据)3.按位异或运算1.使用临时

使用C语言实现交换整数的奇数位和偶数位

《使用C语言实现交换整数的奇数位和偶数位》在C语言中,要交换一个整数的二进制位中的奇数位和偶数位,重点需要理解位操作,当我们谈论二进制位的奇数位和偶数位时,我们是指从右到左数的位置,本文给大家介绍了使... 目录一、问题描述二、解决思路三、函数实现四、宏实现五、总结一、问题描述使用C语言代码实现:将一个整