ROCm上情感分析:使用循环神经网络

2024-05-25 07:04

本文主要是介绍ROCm上情感分析:使用循环神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

15.2. 情感分析:使用循环神经网络 — 动手学深度学习 2.0.0 documentation (d2l.ai)

代码

import torch
from torch import nn
from d2l import torch as d2lbatch_size = 64
train_iter, test_iter, vocab = d2l.load_data_imdb(batch_size)class BiRNN(nn.Module):def __init__(self, vocab_size, embed_size, num_hiddens,num_layers, **kwargs):super(BiRNN, self).__init__(**kwargs)self.embedding = nn.Embedding(vocab_size, embed_size)# 将bidirectional设置为True以获取双向循环神经网络self.encoder = nn.LSTM(embed_size, num_hiddens, num_layers=num_layers,bidirectional=True)self.decoder = nn.Linear(4 * num_hiddens, 2)def forward(self, inputs):# inputs的形状是(批量大小,时间步数)# 因为长短期记忆网络要求其输入的第一个维度是时间维,# 所以在获得词元表示之前,输入会被转置。# 输出形状为(时间步数,批量大小,词向量维度)embeddings = self.embedding(inputs.T)self.encoder.flatten_parameters()# 返回上一个隐藏层在不同时间步的隐状态,# outputs的形状是(时间步数,批量大小,2*隐藏单元数)outputs, _ = self.encoder(embeddings)# 连结初始和最终时间步的隐状态,作为全连接层的输入,# 其形状为(批量大小,4*隐藏单元数)encoding = torch.cat((outputs[0], outputs[-1]), dim=1)outs = self.decoder(encoding)return outsembed_size, num_hiddens, num_layers = 100, 100, 2
devices = d2l.try_all_gpus()
net = BiRNN(len(vocab), embed_size, num_hiddens, num_layers)def init_weights(m):if type(m) == nn.Linear:nn.init.xavier_uniform_(m.weight)if type(m) == nn.LSTM:for param in m._flat_weights_names:if "weight" in param:nn.init.xavier_uniform_(m._parameters[param])
net.apply(init_weights);glove_embedding = d2l.TokenEmbedding('glove.6b.100d')embeds = glove_embedding[vocab.idx_to_token]
embeds.shapenet.embedding.weight.data.copy_(embeds)
net.embedding.weight.requires_grad = Falselr, num_epochs = 0.01, 5
trainer = torch.optim.Adam(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss(reduction="none")
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,devices)#@save
def predict_sentiment(net, vocab, sequence):"""预测文本序列的情感"""sequence = torch.tensor(vocab[sequence.split()], device=d2l.try_gpu())label = torch.argmax(net(sequence.reshape(1, -1)), dim=1)return 'positive' if label == 1 else 'negative'predict_sentiment(net, vocab, 'this movie is so great')predict_sentiment(net, vocab, 'this movie is so bad')

代码解析

这段代码实现了一个用于情感分析的双向循环神经网络(BiRNN)。下面我将逐部分用中文解析它:
1. 导入所需的库和模块:

import torch
from torch import nn
from d2l import torch as d2l

这里导入了PyTorch库、神经网络模块`nn`和基于PyTorch的深度学习库`d2l`(深度学习的一本书)。
2. 加载数据集:

batch_size = 64
train_iter, test_iter, vocab = d2l.load_data_imdb(batch_size)

加载IMDB电影评论数据集,并用迭代器`train_iter`和`test_iter`进行训练和测试。`vocab`是数据集的词汇表。
3. 定义双向循环神经网络(BiRNN)模型:

class BiRNN(nn.Module):...

创建了一个名为`BiRNN`的类,用于定义双向LSTM模型。模型有一个嵌入层(`embedding`),将词汇映射到向量空间。LSTM层(`encoder`)设定为双向,输出经过全连接层(`decoder`)得到最终的分类结果。
4. 初始化模型参数:

def init_weights(m):...
net.apply(init_weights);

init_weights函数用于模型参数的初始化。`net.apply(init_weights);`使用这个函数来应用参数初始化。
5. 加载预训练的词向量:

glove_embedding = d2l.TokenEmbedding('glove.6b.100d')
embeds = glove_embedding[vocab.idx_to_token]
net.embedding.weight.data.copy_(embeds)
net.embedding.weight.requires_grad = False

使用GloVe预训练的100维词向量,并将它们复制到嵌入层`net.embedding`。同时设置`requires_grad = False`使得这些词向量在训练中不被更新。
6. 训练模型:

lr, num_epochs = 0.01, 5
trainer = torch.optim.Adam(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss(reduction="none")
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices)

设置学习率和迭代次数,使用Adam优化器和交叉熵损失函数。用`d2l.train_ch13`函数来训练和评估模型。
7. 定义预测函数:

def predict_sentiment(net, vocab, sequence):...

这个函数用于预测给定文本序列的情感标签(积极或消极)。
8. 使用模型进行预测:

predict_sentiment(net, vocab, 'this movie is so great')
predict_sentiment(net, vocab, 'this movie is so bad')

调用`predict_sentiment`函数分别对两个句子进行情感预测。
整体来看,这段代码主要是利用循环神经网络对电影评论的情感进行分类,它通过加载预训练好的词向量,构建一个双向LSTM网络,并在IMDB评论数据集上进行训练和测试。最后定义了一个实用函数,用于预测输入句子的情感倾向。

这篇关于ROCm上情感分析:使用循环神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1000802

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}