ROCm上情感分析:使用循环神经网络

2024-05-25 07:04

本文主要是介绍ROCm上情感分析:使用循环神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

15.2. 情感分析:使用循环神经网络 — 动手学深度学习 2.0.0 documentation (d2l.ai)

代码

import torch
from torch import nn
from d2l import torch as d2lbatch_size = 64
train_iter, test_iter, vocab = d2l.load_data_imdb(batch_size)class BiRNN(nn.Module):def __init__(self, vocab_size, embed_size, num_hiddens,num_layers, **kwargs):super(BiRNN, self).__init__(**kwargs)self.embedding = nn.Embedding(vocab_size, embed_size)# 将bidirectional设置为True以获取双向循环神经网络self.encoder = nn.LSTM(embed_size, num_hiddens, num_layers=num_layers,bidirectional=True)self.decoder = nn.Linear(4 * num_hiddens, 2)def forward(self, inputs):# inputs的形状是(批量大小,时间步数)# 因为长短期记忆网络要求其输入的第一个维度是时间维,# 所以在获得词元表示之前,输入会被转置。# 输出形状为(时间步数,批量大小,词向量维度)embeddings = self.embedding(inputs.T)self.encoder.flatten_parameters()# 返回上一个隐藏层在不同时间步的隐状态,# outputs的形状是(时间步数,批量大小,2*隐藏单元数)outputs, _ = self.encoder(embeddings)# 连结初始和最终时间步的隐状态,作为全连接层的输入,# 其形状为(批量大小,4*隐藏单元数)encoding = torch.cat((outputs[0], outputs[-1]), dim=1)outs = self.decoder(encoding)return outsembed_size, num_hiddens, num_layers = 100, 100, 2
devices = d2l.try_all_gpus()
net = BiRNN(len(vocab), embed_size, num_hiddens, num_layers)def init_weights(m):if type(m) == nn.Linear:nn.init.xavier_uniform_(m.weight)if type(m) == nn.LSTM:for param in m._flat_weights_names:if "weight" in param:nn.init.xavier_uniform_(m._parameters[param])
net.apply(init_weights);glove_embedding = d2l.TokenEmbedding('glove.6b.100d')embeds = glove_embedding[vocab.idx_to_token]
embeds.shapenet.embedding.weight.data.copy_(embeds)
net.embedding.weight.requires_grad = Falselr, num_epochs = 0.01, 5
trainer = torch.optim.Adam(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss(reduction="none")
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,devices)#@save
def predict_sentiment(net, vocab, sequence):"""预测文本序列的情感"""sequence = torch.tensor(vocab[sequence.split()], device=d2l.try_gpu())label = torch.argmax(net(sequence.reshape(1, -1)), dim=1)return 'positive' if label == 1 else 'negative'predict_sentiment(net, vocab, 'this movie is so great')predict_sentiment(net, vocab, 'this movie is so bad')

代码解析

这段代码实现了一个用于情感分析的双向循环神经网络(BiRNN)。下面我将逐部分用中文解析它:
1. 导入所需的库和模块:

import torch
from torch import nn
from d2l import torch as d2l

这里导入了PyTorch库、神经网络模块`nn`和基于PyTorch的深度学习库`d2l`(深度学习的一本书)。
2. 加载数据集:

batch_size = 64
train_iter, test_iter, vocab = d2l.load_data_imdb(batch_size)

加载IMDB电影评论数据集,并用迭代器`train_iter`和`test_iter`进行训练和测试。`vocab`是数据集的词汇表。
3. 定义双向循环神经网络(BiRNN)模型:

class BiRNN(nn.Module):...

创建了一个名为`BiRNN`的类,用于定义双向LSTM模型。模型有一个嵌入层(`embedding`),将词汇映射到向量空间。LSTM层(`encoder`)设定为双向,输出经过全连接层(`decoder`)得到最终的分类结果。
4. 初始化模型参数:

def init_weights(m):...
net.apply(init_weights);

init_weights函数用于模型参数的初始化。`net.apply(init_weights);`使用这个函数来应用参数初始化。
5. 加载预训练的词向量:

glove_embedding = d2l.TokenEmbedding('glove.6b.100d')
embeds = glove_embedding[vocab.idx_to_token]
net.embedding.weight.data.copy_(embeds)
net.embedding.weight.requires_grad = False

使用GloVe预训练的100维词向量,并将它们复制到嵌入层`net.embedding`。同时设置`requires_grad = False`使得这些词向量在训练中不被更新。
6. 训练模型:

lr, num_epochs = 0.01, 5
trainer = torch.optim.Adam(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss(reduction="none")
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices)

设置学习率和迭代次数,使用Adam优化器和交叉熵损失函数。用`d2l.train_ch13`函数来训练和评估模型。
7. 定义预测函数:

def predict_sentiment(net, vocab, sequence):...

这个函数用于预测给定文本序列的情感标签(积极或消极)。
8. 使用模型进行预测:

predict_sentiment(net, vocab, 'this movie is so great')
predict_sentiment(net, vocab, 'this movie is so bad')

调用`predict_sentiment`函数分别对两个句子进行情感预测。
整体来看,这段代码主要是利用循环神经网络对电影评论的情感进行分类,它通过加载预训练好的词向量,构建一个双向LSTM网络,并在IMDB评论数据集上进行训练和测试。最后定义了一个实用函数,用于预测输入句子的情感倾向。

这篇关于ROCm上情感分析:使用循环神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1000802

相关文章

使用Python自建轻量级的HTTP调试工具

《使用Python自建轻量级的HTTP调试工具》这篇文章主要为大家详细介绍了如何使用Python自建一个轻量级的HTTP调试工具,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录一、为什么需要自建工具二、核心功能设计三、技术选型四、分步实现五、进阶优化技巧六、使用示例七、性能对比八、扩展方向建

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Linux中的计划任务(crontab)使用方式

《Linux中的计划任务(crontab)使用方式》:本文主要介绍Linux中的计划任务(crontab)使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言1、linux的起源与发展2、什么是计划任务(crontab)二、crontab基础1、cro

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

C++中std::distance使用方法示例

《C++中std::distance使用方法示例》std::distance是C++标准库中的一个函数,用于计算两个迭代器之间的距离,本文主要介绍了C++中std::distance使用方法示例,具... 目录语法使用方式解释示例输出:其他说明:总结std::distance&n编程bsp;是 C++ 标准

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO