本文主要是介绍随机变量(概率论),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
一,
定义 :设随机实验的样本空间是S=|e|,X=X(e)是定义在样本空间S上的实值单值函数,称X=X(e)为随机变量.
如下图画出了样本点与实数X=X(e)对应的示意图.
1,首先随机变量是一个函数
2,该函数是作用在全体样本空间上的
3,输出为数值
4,输出值唯一
解析:如果把样本空间理解成所有事件的集合,然后对该集合做区域划分,随机变量就是统计每个区域内发生的事件的个数,并映射成具体的数值.
二,
作用:量化,转化成数学可以处理的模型
随机变量(random variable)表示随机试验各种结果的实值单值函数。随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。随机事件数量化的好处是可以用数学分析的方法来研究随机现象。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。
三,
简单地说,随机变量是指随机事件的数量表现。例如一批注入某种毒物的动物,在一定时间内死亡的只数;某地若干名男性健康成人中,每人血红蛋白量的测定值;等等。另有一些现象并不直接表现为数量,例如人口的男女性别、试验结果的阳性或阴性等,但我们可以规定男性为1,女性为0,则非数量标志也可以用数量来表示。这些例子中所提到的量,尽管它们的具体内容是各式各样的,但从数学观点来看,它们表现了同一种情况,这就是每个变量都可以随机地取得不同的数值,而在进行试验或测量之前,我们要预言这个变量将取得某个确定的数值是不可能的。
四,
按照随机变量可能取得的值,可以把它们分为两种基本类型:
离散型
离散型(discrete)随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。
连续型
连续型(continuous)随机变量即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。
这篇关于随机变量(概率论)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!