随机变量(概率论)

2024-05-25 03:38
文章标签 概率论 随机变量

本文主要是介绍随机变量(概率论),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一,
定义 :设随机实验的样本空间是S=|e|,X=X(e)是定义在样本空间S上的实值单值函数,称X=X(e)为随机变量.
如下图画出了样本点与实数X=X(e)对应的示意图.
这里写图片描述
1,首先随机变量是一个函数
2,该函数是作用在全体样本空间上的
3,输出为数值
4,输出值唯一
解析:如果把样本空间理解成所有事件的集合,然后对该集合做区域划分,随机变量就是统计每个区域内发生的事件的个数,并映射成具体的数值.
二,
作用:量化,转化成数学可以处理的模型
随机变量(random variable)表示随机试验各种结果的实值单值函数。随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。随机事件数量化的好处是可以用数学分析的方法来研究随机现象。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。
三,
简单地说,随机变量是指随机事件的数量表现。例如一批注入某种毒物的动物,在一定时间内死亡的只数;某地若干名男性健康成人中,每人血红蛋白量的测定值;等等。另有一些现象并不直接表现为数量,例如人口的男女性别、试验结果的阳性或阴性等,但我们可以规定男性为1,女性为0,则非数量标志也可以用数量来表示。这些例子中所提到的量,尽管它们的具体内容是各式各样的,但从数学观点来看,它们表现了同一种情况,这就是每个变量都可以随机地取得不同的数值,而在进行试验或测量之前,我们要预言这个变量将取得某个确定的数值是不可能的。
四,
按照随机变量可能取得的值,可以把它们分为两种基本类型:
离散型
离散型(discrete)随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。
连续型
连续型(continuous)随机变量即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。

这篇关于随机变量(概率论)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1000379

相关文章

机械学习—零基础学习日志(概率论总笔记5)

引言——“黑天鹅” 要获得95%以上置信度的统计结果,需要被统计的对象出现上千次,但是如果整个样本只有几千字,被统计的对象能出现几次就不错了。这样得到的数据可能和真实的概率相差很远。怎么避免“黑天鹅”? 古德-图灵折扣估计法 在词语统计中,有点词语虽然是出现0次,但是实际的出现概率并不是永远不可能的零。 那需要把一些概率转移给到这些词语。 古德的做法实际上就是把出现1次的单词的总量,给了

概率论与数理统计(1)

第一节博客已经整理了求导的公式,一些常用的概念。链接如下:高等数学基础(1)-CSDN博客。         第二节博客整理了微积分的公式及其相关概念。链接如下:高等数学基础(2)——微积分-CSDN博客         第三节博客则整理了泰勒公式和拉格朗日公式的相关概念。链接如下:高等数学基础(3)——泰勒公式与拉格朗日-CSDN博客         第四节博客则整理了行

概率论 --- Uva 11181 Probability|Given

Uva 11181 Probability|Given  Problem's Link:   http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18546   Mean:  n个人去逛超市,第i个人会购买东西的概率是Pi。出超市以后发现有r个人买了东西,问你每个人购买东西的实际概率是多少。   analyse

概率学 笔记一 - 概率 - 随机变量 - 期望 - 方差 - 标准差(也不知道会不会有二)

概率不用介绍,它的定义可以用一个公式写出: 事件发生的概率 = 事件可能发生的个数 结果的总数 事件发生的概率=\cfrac{事件可能发生的个数}{结果的总数} 事件发生的概率=结果的总数事件可能发生的个数​ 比如一副标准的 52 张的扑克牌,每张牌都是唯一的,所以,抽一张牌时,每张牌的概率都是 1/52。但是有人就会说了,A 点明明有四张,怎么会是 1/52 的概率。 这就需要精准的指出

机械学习—零基础学习日志(概率论总笔记3)

“条件概率”和“本身概率” 对于几乎所有的随机事件来讲,条件概率由于条件的存在,它通常不等于本身的概率。前提条件会影响后续的概率,在一个前提条件下,某个时间发生的概率,我理解,这叫,条件概率。 写成P(事件|条件)的形式。 吴军老师给到的启发:很多人学习别人的经验,用到自己身上就不灵了,原因就是没有搞清楚条件。另一方面,有些原来大家认为不可能做成的事情,一旦条件具备,就成为了大概率事件。

概率论原理精解【11】

文章目录 测度论拓扑基定义性质应用拓扑基生成拓扑的过程1. 拓扑基的定义2. 由拓扑基生成拓扑3. 例子说明 4. 总结例子 子基基础例子构造由子基生成的拓扑基础拓扑子基的定义解释例子总结 子基(subbase)是一个用于生成拓扑的较弱的工具定义构造过程性质示例例子 1: 实数线上的半开区间例子 2: 离散拓扑例子 3: 有限补拓扑 参考文献 测度论 拓扑基 是拓扑学中的一

概率论原理精解【10】

文章目录 测度论拓扑基定义性质例子应用拓扑基的例子例题 子基基础例子构造由子基生成的拓扑 子基(subbase)是一个用于生成拓扑的较弱的工具定义构造过程性质示例例子 1: 实数线上的半开区间例子 2: 离散拓扑例子 3: 有限补拓扑 参考文献 测度论 拓扑基 是拓扑学中的一个重要概念,用于描述拓扑空间的基本结构。以下是对拓扑基的详细解释: 定义 设 X X X是拓扑空间