Label Words are Anchors: An Information Flow Perspective for Understanding In-Context Learning Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, Fandong Meng, Jie Zhou, Xu Sun 信息流视角:论文提出了一种新的视角,即通
一.语境化语言表示模型介绍 语境化语言表示模型(Contextualized Language Representation Models)是一类在自然语言处理领域中取得显著成功的模型,其主要特点是能够根据上下文动态地学习词汇和短语的表示。这些模型利用了上下文信息,使得同一词汇在不同语境中可以有不同的表示。以下是一些著名的语境化语言表示模型: ELMo(Embeddings from Lan
Thread of Thought Unraveling Chaotic Contexts 大型语言模型(LLMs)在自然语言处理领域开启了一个变革的时代,在文本理解和生成任务上表现出色。然而,当面对混乱的上下文环境(例如,干扰项而不是长的无关上下文)时,它们会遇到困难,导致无意中忽略了混乱上下文中的某些细节。为了应对这些挑战,我们引入了“思维线索”(Thread of Thought,ThoT
一.语境化语言表示模型介绍 语境化语言表示模型(Contextualized Language Representation Models)是一类在自然语言处理领域中取得显著成功的模型,其主要特点是能够根据上下文动态地学习词汇和短语的表示。这些模型利用了上下文信息,使得同一词汇在不同语境中可以有不同的表示。以下是一些著名的语境化语言表示模型: ELMo(Embeddings from Lan