一、背景知识 DMP作为轨迹生成方法的一种,具有诸多优势,如弹簧阻尼二阶系统保证了他可以收敛到目标点,且具有良好的时间和空间上的泛化能力。我最近一直在想为什么该系统可以保证运动轨迹收敛到目标点 g g g,后来看了码农家园的博客以及对照论文中的内容有了一定的理解,下面给出DMP算法详细的收敛性证明。 二、从微分方程的角度出发 利用本科阶段学到的高等数学知识,我们先求解一个微分方程: f ˙
第 3 章 Fourier级数的收敛性(Convergence of Fourier Series) The sine and cosine series, by which one can represent an arbitrary function in a given interval, enjoy among other remarkable properties that of
一般迭代法 1. 基本原理和迭代公式 先看一个例子。设有两个函数 y = φ ( x ) y=\varphi(x) y=φ(x)和 y = x y=x y=x,欲求其交点 x ∗ x^* x∗。为此,可将函数 y = x y=x y=x改写成 x = y x=y x=y的形式,并给定一个初始值 x 0 x_0 x0,并进行如下计算: (1)先计算函数 y = φ ( x ) y=\varp