坏账专题

机器学习案例|使用机器学习轻松预测信用卡坏账风险,极大程度降低损失

01、案例说明 对于模型的参数,除了使用系统的设定值之外,可以进行再进一步的优化而得到更好的结果。RM提供了几种参数优化的方法,能够让整体模型的效率提高。而其使用的概念,仍然是使用计算机强大的计算能力,对于不同的参数组合进行准确度评估,使用硬算的方式选出最优的参数。这个也是机器学习里面的另外一个特点与优势。 本案例讨论的是:对于信用卡公司需要判断客户会不会变成坏账(Default),从而预先防

他用几个公式解释了现金贷业务的风控与运营 (下) 2017-09-18 22:04 风控/运营/违约 “金额如此小的业务,成本极度敏感,刚开始的时候我们在数据成本和坏账成本之间特别纠结。” 以上是许

他用几个公式解释了现金贷业务的风控与运营 (下) 2017-09-18 22:04 风控/运营/违约 “金额如此小的业务,成本极度敏感,刚开始的时候我们在数据成本和坏账成本之间特别纠结。” 以上是许多朋友现金贷业务的真实感受。在这一章中,我不打算像上一章那样做很多计算,我们聊聊关于a%(新贷客户损失率)及它的影响因素还有风控上如何掐头去尾取中间的事儿。 我们先来看下损失率是