近日,科罗拉多州立大学联合劳伦斯利弗莫尔国家实验室的研究团队发布了一项开创性的研究《Assessing decadal variability of subseasonal forecasts of opportunity using explainable AI》。这项研究利用先进的可解释人工智能(XAI)技术,对次季节气候预测的年代际变化进行了深入探究。次季节时间尺度的气候预测介于常规天气预报
一、引言 许多科学领域的数据分析工作已经变得越来越复杂和灵活,这也意味着即使相同的数据,不同研究者采用的处理方法和步骤也可能不同,那么得到的结果也不尽然一致。近期,Nature杂志发表一篇题目为《Variability in the analysis of a single neuroimaging dataset by many teams》的研究论文,该研究通过要求70个独立团队分析相同的fM