#清华大模型公开课第二季 #OpenBMB 目录 1. The Evolution of Artificial Intelligence --History 人工智能的演变--历史 1.1 Definition of AI --定义 1.2 Conceptualization of AI -- 概念 1.3 Birth of AI as a Discipline 1.4 Develop
从2024年1月17日到2024年8月20日,终于将密歇根大学的python for everyone的python公开课跟完。站在一月份规划的时刻来看,比我想象中花费的时间更多,我当时肯定没有想到要花上整整七个月的时间才能将这个公开课的内容看完,毕竟这个公开课时python的基础课程,而python在各类编程语言中的难度并不大,其作为解释性语言,语义相对容易理解。 而站在今天的角度来看,将这门
神经元 生物神经元: 平时处于抑制状态,当接受信息量达到一定程度后进入兴奋状态。 人工神经元: 一个人工神经元大致有两个步骤: 一是收集信息,如上图中 x 1 , ⋯ , x d x_1,\cdots,x_d x1,⋯,xd表示神经元可以接受的外界信号,对这些信号进行加权汇总(不同外界信号对神经元作用的权重不同,即 w 1 , ⋯ , w d w_1,\cdots,w_d w1,
某种程度上来说,这个课程所有的内容最后都会集中于本讲内容,通过本讲的学习,我们将会学习到如何训练一个Agent,使其能够在完全未知的环境下较好地完成任务,得到尽可能多的奖励。本讲是基础理论部分的最后一讲,本讲以后的内容都是关于实际应用强化学习解决大规模问题的理论和技巧。本讲的技术核心主要基于先前一讲以及更早的一些内容,如果对先前的内容有深刻的理解,那么理解本讲内容将会比较容易。 简介 In
英伟达公开课官网地址 Augment your LLM Using Retrieval Augmented Generation Building RAG Agents with LLMs langchain的workflow: ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/c90cb157c9c84bb5b3da380ec56f5c2a