信用评分卡模型在国外是一种成熟的预测方法,尤其在信用风险评估以及金融风险控制领域更是得到了比较广泛的使用,其原理是将模型变量WOE编码方式离散化之后运用logistic回归模型进行的一种二分类变量的广义线性模型。 本文重点介绍模型变量WOE以及IV原理,为表述方便,本文将模型目标标量为1记为违约用户,对于目标变量为0记为正常用户;则WOE(weight of Evidence)其实
WOE(Weight of Evidence)迹象权数,表示当前分箱中好坏客户的各自占总体好坏客户比例的差异,描述了预测变量与目标变量之间的关系。 IV(information value)信息值,又称VOI(Value Of Information),用来表示变量预测能力的强度,可用于单变量筛选。 其数学表达为: I V = ∑ i = 1 N I V i = ∑ i =