gsconv专题

【YOLOv5/v7改进系列】引入Slimneck-GSConv

一、导言 GSConv旨在平衡模型的准确度与速度,针对自动驾驶车辆中目标检测任务设计。从类脑研究中得到的直观理解是,具有更多神经元的模型能够获得更强的非线性表达能力。但是,不容忽视的是生物大脑处理信息的强大能力和低能耗远远超过计算机。强大的模型不能仅仅通过无限制地增加模型参数的数量来构建。当前阶段,轻量化设计对于缓解高计算成本是有效的,这主要通过使用深度可分离卷积(DSC)操作来减少参数量和

YOLOv5改进 | 卷积模块 | 将Conv替换为轻量化的GSConv【原理 + 完整代码】

💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 目标检测是计算机视觉中一个重要的下游任务。对于边缘盒子的计算平台来说,一个大型模型很难实现实时检测的要求。而且,一个由大量深度可分离卷积层构建的轻量级模型无法达到足够的准确度。我们引入了一种新的轻量级卷积技术GSConv,以减轻模型但保持准确性。GSConv在模型的准确性和速度之间实现了优秀的权衡。在本文中,给大家带来的教程是将原来的

Slim-Neck by GSConv

paper:Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles official implementation:https://github.com/alanli1997/slim-neck-by-gsconv 背景 目标检测是计算机视觉中一个重要的下游

YOLOv8改进,添加GSConv+Slim Neck,有效提升目标检测效果,代码改进(超详细)

目录 摘要  主要想法 GSConv GSConv代码实现   slim-neck   slim-neck代码实现 yaml文件 完整代码分享 总结 摘要 目标检测是计算机视觉中重要的下游任务。对于车载边缘计算平台来说,巨大的模型很难达到实时检测的要求。而且,由大量深度可分离卷积层构建的轻量级模型无法达到足够的精度。我们引入了一种新的轻量级卷积技术 GSConv,

YOLOv5独家改进:轻量级原创自研 | 一种多尺度的GSConv卷积变体,轻量化的同时能够实现涨点 | 新颖的轻量级网络

💡💡💡本文独家改进:1)基于GSConv提出了一种Multi-Scale Ghost Conv的卷积变体,保证轻量级的同时实现涨点,2)同时结合Bottleneck,设计了一种新颖的轻量级网络。 💡💡💡在多个数据集验证能够涨点,同时跟yolov5s进行参数量对比: parameters、GFLOPs都有大幅度的降低  parametersGFLOPskbyolov5s

YOLOv5独家原创改进:多层次特征融合(SDI)结合PConv、DualConv、GSConv,实现二次创新 | UNet v2最新论文

💡💡💡本文独家改进:多层次特征融合(SDI)高效结合DualConv、PConv、GSConv等实现二次创新 1)替代原始的Concat;      收录 YOLOv5原创自研 https://blog.csdn.net/m0_63774211/category_12511931.html 💡💡💡全网独家首发创新(原创),适合paper !!! 💡💡💡 2024年计

YOLOv5算法进阶改进(8)— 引入GSConv + Slim Neck相结合的方式降低模型复杂性

前言:Hello大家好,我是小哥谈。在文章中,作者提出了一种新方法 GSConv 来减轻模型的复杂度并保持准确性。GSConv可以更好地平衡模型的准确性和速度。并且,提供了一种设计范式Slim Neck,以实现检测器更高的计算成本效益。实验过程中,与原始网络相比,改进方法获得了最优秀的检测结果。~🌈     前期回顾:</

【目标检测实验系列】YOLOv5创新点改进:融合高效轻量级网络结构GSConv,减轻模型复杂度的同时保持检测精度!(内含源代码,超详细改进代码流程)

自我介绍:本人硕士期间全程放养,目前成果:一篇北大核心CSCD录用,两篇中科院三区已见刊,一篇中科院三区在投。如何找创新点,如何放养过程厚积薄发,如何写中英论文,找期刊等等。本人后续会以自己实战经验详细写出来,还请大家能够点个关注和赞,收藏一下,谢谢大家 1. 文章主要内容        本篇博客主要涉及将GSConv融合到YOLOv5模型中。通过GSConv替换普通的卷积结构,

YOLOv5改进实战 | GSConv + SlimNeck双剑合璧,进一步提升YOLO!

前言 轻量化网络设计是一种针对移动设备等资源受限环境的深度学习模型设计方法。下面是一些常见的轻量化网络设计方法: 网络剪枝:移除神经网络中冗余的连接和参数,以达到模型压缩和加速的目的。分组卷积:将卷积操作分解为若干个较小的卷积操作,并将它们分别作用于输入的不同通道,从而减少计算量。深度可分离卷积:将标准卷积分解成深度卷积和逐点卷积两个步骤,使得在大部分情况下可以大幅减少计算量。跨层

YOLOv7改进:引入GSConv+Slim Neck,提升小目标检测精度

💡💡💡本文属于原创独家改进 引入了一种新方法 GSConv 来代替 SC 操作。该方法使卷积计算的输出尽可能接近 SC,同时降低计算成本; 提供了一种新的设计范式,即带有标准 Backbone 的 Slim-Neck 设计; GSConv+Slim Neck  |   亲测在多个数据集实现暴力涨点;  收录: YOLOv7高阶自研专栏介绍: http://t.csdnimg