diou专题

YOLOv9改进策略 | 损失函数篇 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数

一、本文介绍 这篇文章介绍了YOLOv9的重大改进,特别是在损失函数方面的创新。它不仅包括了多种IoU损失函数的改进和变体,如SIoU、WIoU、GIoU、DIoU、EIOU、CIoU,还融合了“Focus”思想,创造了一系列新的损失函数。这些组合形式的损失函数超过了二十余种,每种都针对特定的目标检测挑战进行优化。文章会详细探讨这些损失函数如何提高YOLOv9在各种检测任务中的性能,包括提升精度

目标检测---IOU计算详细解读(IoU、GIoU、DIoU、CIoU、EIOU、Focal-EIOU、SIOU、WIOU)

常见IoU解读与代码实现 一、✒️IoU(Intersection over Union)1.1 🔥IoU原理☀️ 优点⚡️缺点 1.2 🔥IoU计算1.3 📌IoU代码实现 二、✒️GIoU(Generalized IoU)2.1 GIoU原理☀️优点⚡️缺点 2.2 🔥GIoU计算2.3 📌GIoU代码实现 三、✒️DIoU(Distance-IoU)3.1 DIoU原理☀

目标检测---IOU计算详细解读(IoU、GIoU、DIoU、CIoU、EIOU、Focal-EIOU、WIOU)

常见IoU解读与代码实现 一、✒️IoU(Intersection over Union)1.1 🔥IoU原理☀️ 优点⚡️缺点 1.2 🔥IoU计算1.3 📌IoU代码实现 二、✒️GIoU(Generalized IoU)2.1 GIoU原理☀️优点⚡️缺点 2.2 🔥GIoU计算2.3 📌GIoU代码实现 三、✒️DIoU(Distance-IoU)3.1 DIoU原理☀

YOLOv9更换iou|包含CIoU、DIoU、MDPIoU、GIoU

专栏介绍:YOLOv9改进系列 | 包含深度学习最新创新,助力高效涨点!!! 一、改进点介绍         更换YOLOv9中使用的Iou计算方式,目前支持CIoU、DIoU、MDPIoU、GIoU。 二、Iou模块详解  2.1 模块简介        Iou的主要思想: 预测框(pred_bboxes)与标注框(target_bboxes) 的交并比。 三、

YOLOv5改进 | 损失函数篇 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数

一、本文介绍 这篇文章介绍了YOLOv5的重大改进,特别是在损失函数方面的创新。它不仅包括了多种IoU损失函数的改进和变体,如SIoU、WIoU、GIoU、DIoU、EIOU、CIoU,还融合了“Focus”思想,创造了一系列新的损失函数。这些组合形式的损失函数超过了二十余种,每种都针对特定的目标检测挑战进行优化。文章会详细探讨这些损失函数如何提高YOLOv5在各种检测任务中的性能,包括提

目标检测损失函数:IoU、GIoU、DIoU、CIoU、EIoU、alpha IoU、SIoU、WIoU原理及Pytorch实现

前言 损失函数是用来评价模型的预测值和真实值一致程度,损失函数越小,通常模型的性能越好。不同的模型用的损失函数一般也不一样。损失函数主要是用在模型的训练阶段,如果我们想让预测值无限接近于真实值,就需要将损失值降到最低,在这个过程中就需要引入损失函数,而损失函数的选择又是十分关键。尤其是在目标检测中,损失函数直接关乎到检测效果是否准确,其中IOU损失函数目前主要应用于目标检测的领域,其演变的过程如

【目标检测算法】IOU、GIOU、DIOU、CIOU

目录 参考链接 前言 IOU(Intersection over Union)  优点 缺点 代码 存在的问题  GIOU(Generalized Intersection over Union) 来源 GIOU公式  实现代码 存在的问题 DIoU(Distance-IoU) 来源 DIOU公式  优点 实现代码 总结 参考链接 IoU系列(IoU

【目标检测算法】IOU、GIOU、DIOU、CIOU

目录 参考链接 前言 IOU(Intersection over Union)  优点 缺点 代码 存在的问题  GIOU(Generalized Intersection over Union) 来源 GIOU公式  实现代码 存在的问题 DIoU(Distance-IoU) 来源 DIOU公式  优点 实现代码 总结 参考链接 IoU系列(IoU

目标检测中的损失函数:IOU_Loss、GIOU_Loss、DIOU_Loss和CIOU_Loss

文章目录 前言1.IOU_Loss(Intersection over Union Loss)2.GIOU_Loss(Generalized Intersection over Union Loss)3.DIOU_Loss(Distance Intersection over Union Loss)4.CIOU_Loss(Complete Intersection over Union Lo

【RT-DETR改进】SIoU、GIoU、CIoU、DIoU、AlphaIoU等二十余种损失函数

一、本文介绍 这篇文章介绍了RT-DETR的重大改进,特别是在损失函数方面的创新。它不仅包括了多种IoU损失函数的改进和变体,如SIoU、WIoU、GIoU、DIoU、EIOU、CIoU,还融合了“Alpha”思想,创造了一系列新的损失函数。这些组合形式的损失函数超过了二十余种,每种都针对特定的目标检测挑战进行优化。文章会详细探讨这些损失函数如何提高RT-DETR在各种检测任务中的性能,包括

YOLOv5改进: Inner-IoU基于辅助边框的IoU损失,高效结合 GIoU, DIoU, CIoU,SIoU 等 | 2023.11

💡💡💡本文独家改进:Inner-IoU引入尺度因子 ratio 控制辅助边框的尺度大小用于计算损失,并与现有的基于 IoU ( GIoU, DIoU,  CIoU,SIoU )损失进行有效结合 推荐指数:5颗星        新颖指数:5颗星 💡💡💡Yolov5/Yolov7魔术师,独家首发创新(原创),适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文

YOLOv8改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数

一、本文介绍 这篇文章介绍了YOLOv8的重大改进,特别是在损失函数方面的创新。它不仅包括了多种IoU损失函数的改进和变体,如SIoU、WIoU、GIoU、DIoU、EIOU、CIoU,还融合了“Focus”思想,创造了一系列新的损失函数。这些组合形式的损失函数超过了二十余种,每种都针对特定的目标检测挑战进行优化。文章会详细探讨这些损失函数如何提高YOLOv8在各种检测任务中的性能,包括提升

Smooth L1 loss |IoU|DIoU|CIoU|EIoU|aIoU|SIoU|wise-IoU的通俗讲解

文章目录 1. L1 Loss、L2 Loss 、Smooth L1 Loss1.1 L1 Loss和 L2 Loss1.2 Smooth L1 Loss1.3 Smooth L1 Loss 在目标检测中存在的缺陷 2 IoU loss2.1 IoU原理2.2 IoU 的缺点2.3 代码 3.GIoU Loss3.1 GIoU 原理3.2 GIoU loss 的缺点3.3 代码 4.DIoU

损失函数:DIOU loss手写实现

下面是纯diou代码 '''计算两个box的中心点距离d'''# d = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)d = math.sqrt((pred[:, -1] - target[:, -1]) ** 2 + (pred[:, -2] - target[:, -2]) ** 2)# 左边xpred_l = pred[:,