简单好用的深度学习论文绘图专用工具包--Science Plot

本文主要是介绍简单好用的深度学习论文绘图专用工具包--Science Plot,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

喜欢就关注我们吧!

惊闻昨天美国封禁了哈工大、哈工程两所高校的 Matlab 使用权,很多人担忧禁用范围会进一步扩大到我国多所高校。Matlab在科研仿真,以及绘图上是一个非常方便的工具,如果一旦禁用,是不是我们就不好绘制出好看的科研图表了呢。非也,今天我们一起欣赏一个开源的、非常炫酷的 matolotlib 风格的绘图库。

喜欢的话,记得帮我们转发一下哦~

对于一篇优质的论文而言,除了好的idea之外,好的绘图可以给人眼前一亮的感觉,让审稿人和读者一下子就可以记住你的论文和实验结果,为论文接收和被他人引用创造机会。许多科研工作者大部分都是有好的idea,也有好的实验结果,但是在表达和汇总自己的实验结果方面就显得力不从心,因此经常会有作者收到review之后疯狂质疑审稿人到底有没有读过自己的文章.。。。

不得不说随着顶会投稿数量的爆炸性增长,审稿人力不从心,使得一部分审稿人的水平确实较之前有所降低,但是好的论文配图会增加论文脱颖而出的可能。之前的配图一般使用的是matplotlib,ggplot2,MATLAB等这样的绘图包,然而matplotlib默认设置绘制出来的图总让人感觉没有那么专业,ggplot2的图确实优美但是R语言又比较小众,MATLAB...(因为川建国同志,可能以后我们就不能用MATLAB绘图发表论文了)。在这种情况下,SciencePlots就是非常好的一个选择。

SciencePlots是一个专门为科研论文打造的轻量化的绘图工具包,安装SciencePlots最简单的方式是使用pip,使用的指令为:

# 安装最新版
pip install git+https://github.com/garrettj403/SciencePlots.git# 安装稳定版
pip install SciencePlots

安装完成后,使用SciencePlots也非常简单,只需要导入matplotlib工具包,选择相应的style即可。例如,如果想要给Science投稿,那么只需要引入下列的主题:

import matplotlib.pyplot as plt
plt.style.use('science')

需要使用IEEE的格式,则是

import matplotlib.pyplot as plt
plt.style.use(['science','ieee'])

但是需要注意的是,IEEE的格式会覆盖一些Science的风格,例如列宽,行距等。

接下来,用一些例子来展示一下SciencePlots的用法和具体的效果,首先,引入一些初始的数据并进行绘制。

import numpy as np
import matplotlib.pyplot as plt
def model(x, p): return x ** (2 * p + 1) / (1 + x ** (2 * p))
x = np.linspace(0.75, 1.25, 201)

如果不使用SciencePlots,使用matplotlib的绘制代码:

fig, ax = plt.subplots()
for p in [10, 15, 20, 30, 50, 100]:      ax.plot(x, model(x, p), label=p)
ax.legend(title='Order')
ax.set(xlabel='Voltage (mV)')
ax.set(ylabel='Current ($\mu$A)')
ax.autoscale(tight=True)
fig.savefig('fig1.jpg', dpi=300)

绘制结果如下:

无论是形状,字体看上去都并不专业。如果我们稍加改造,使用SciencePlots中Science的提交格式,上面的图片就会变为:

无论是坐标轴的刻度线,字体都变得高大上了很多。具体的做法也非常简单,只需要一行简单的with语句就可以完成字体,坐标轴,图例等诸多任务,代码为:

with plt.style.context(['science']):fig, ax = plt.subplots()        for p in [10, 15, 20, 30, 50, 100]:               ax.plot(x, model(x, p), label=p)        ax.legend(title='Order')        ax.set(xlabel='Voltage (mV)')        ax.set(ylabel='Current ($\mu$A)')        ax.autoscale(tight=True)        fig.savefig('figures/fig1.pdf')        fig.savefig('figures/fig1.jpg', dpi=300)

OK,SCI中了,现在我们需要投个CVPR什么的了。IEEE要求黑白印刷出来的文章也需要能够区分颜色。之前我们还需要查IEEE颜色表什么的,但是现在,类似的,我们只需要修改一下with语句,就可以得到IEEE样式的:

with plt.style.context(['science', 'ieee']):fig, ax = plt.subplots()    for p in [10, 20, 50]:       ax.plot(x, model(x, p), label=p)    ax.legend(title='Order')    ax.set(xlabel='Voltage (mV)')    ax.set(ylabel='Current ($\mu$A)')    ax.autoscale(tight=True)    fig.savefig('figures/fig2.pdf')    fig.savefig('figures/fig2.jpg', dpi=300)

图片的效果则变为了:

除了二维的线图(line plot),散点图同样可以绘制:

with plt.style.context(['science', 'scatter']):    fig, ax = plt.subplots(figsize=(4,4))    ax.plot([-2, 2], [-2, 2], 'k--')    ax.fill_between([-2, 2], [-2.2, 1.8], [-1.8, 2.2], color='dodgerblue', alpha=0.2, lw=0)    for i in range(7):        x1 = np.random.normal(0, 0.5, 10)        y1 = x1 + np.random.normal(0, 0.2, 10)        ax.plot(x1, y1, label=r"$^\#${}".format(i+1))    ax.legend(title='Sample', loc=2)    ax.set_xlabel(r"$\log_{10}\left(\frac{L_\mathrm{IR}}{\mathrm{L}_\odot}\right)$")    ax.set_ylabel(r"$\log_{10}\left(\frac{L_\mathrm{6.2}}{\mathrm{L}_\odot}\right)$")    ax.set_xlim([-2, 2])    ax.set_ylim([-2, 2])    fig.savefig('figures/fig3.pdf')    fig.savefig('figures/fig3.jpg', dpi=300)

图片结果如下:

除了不同样式,不同杂志之外,SciencePlots同样提供了不同风格的配色方案,高对比度(high-vis)风格。

颜色明快(bright)风格:

活泼配色(vibrant)风格:

没那么花哨(muted)的风格:

复古(retro)的风格:

最有意思的是,不知道是不是怕从Apple Store下架,SciencePlots还加了一个黑色模式(dark_background)。

想要了解更多有关SciencePlots的内容,可以去SciencePlots的官方Github了解更多。

Github链接附上: https://github.com/garrettj403/SciencePlots。

AIZOO,打造中国最大的深度学习和人工智能社区,欢迎关注我们,也欢迎添加下方小助手的微信,邀请您加入我们的千人深度学习爱好者社区。

欢迎扫描下方的二维码添加小助手微信,邀请您加入我们的微信交流群。

群里有多位清北复交的大佬和众多深度学习er在一起愉快的交流技术,欢迎你的加入哦。

 添加小助手微信,邀您进AIZOO技术交流群

听说点在看的,论文都会发到手软~

这篇关于简单好用的深度学习论文绘图专用工具包--Science Plot的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/999455

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio