简单好用的深度学习论文绘图专用工具包--Science Plot

本文主要是介绍简单好用的深度学习论文绘图专用工具包--Science Plot,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

喜欢就关注我们吧!

惊闻昨天美国封禁了哈工大、哈工程两所高校的 Matlab 使用权,很多人担忧禁用范围会进一步扩大到我国多所高校。Matlab在科研仿真,以及绘图上是一个非常方便的工具,如果一旦禁用,是不是我们就不好绘制出好看的科研图表了呢。非也,今天我们一起欣赏一个开源的、非常炫酷的 matolotlib 风格的绘图库。

喜欢的话,记得帮我们转发一下哦~

对于一篇优质的论文而言,除了好的idea之外,好的绘图可以给人眼前一亮的感觉,让审稿人和读者一下子就可以记住你的论文和实验结果,为论文接收和被他人引用创造机会。许多科研工作者大部分都是有好的idea,也有好的实验结果,但是在表达和汇总自己的实验结果方面就显得力不从心,因此经常会有作者收到review之后疯狂质疑审稿人到底有没有读过自己的文章.。。。

不得不说随着顶会投稿数量的爆炸性增长,审稿人力不从心,使得一部分审稿人的水平确实较之前有所降低,但是好的论文配图会增加论文脱颖而出的可能。之前的配图一般使用的是matplotlib,ggplot2,MATLAB等这样的绘图包,然而matplotlib默认设置绘制出来的图总让人感觉没有那么专业,ggplot2的图确实优美但是R语言又比较小众,MATLAB...(因为川建国同志,可能以后我们就不能用MATLAB绘图发表论文了)。在这种情况下,SciencePlots就是非常好的一个选择。

SciencePlots是一个专门为科研论文打造的轻量化的绘图工具包,安装SciencePlots最简单的方式是使用pip,使用的指令为:

# 安装最新版
pip install git+https://github.com/garrettj403/SciencePlots.git# 安装稳定版
pip install SciencePlots

安装完成后,使用SciencePlots也非常简单,只需要导入matplotlib工具包,选择相应的style即可。例如,如果想要给Science投稿,那么只需要引入下列的主题:

import matplotlib.pyplot as plt
plt.style.use('science')

需要使用IEEE的格式,则是

import matplotlib.pyplot as plt
plt.style.use(['science','ieee'])

但是需要注意的是,IEEE的格式会覆盖一些Science的风格,例如列宽,行距等。

接下来,用一些例子来展示一下SciencePlots的用法和具体的效果,首先,引入一些初始的数据并进行绘制。

import numpy as np
import matplotlib.pyplot as plt
def model(x, p): return x ** (2 * p + 1) / (1 + x ** (2 * p))
x = np.linspace(0.75, 1.25, 201)

如果不使用SciencePlots,使用matplotlib的绘制代码:

fig, ax = plt.subplots()
for p in [10, 15, 20, 30, 50, 100]:      ax.plot(x, model(x, p), label=p)
ax.legend(title='Order')
ax.set(xlabel='Voltage (mV)')
ax.set(ylabel='Current ($\mu$A)')
ax.autoscale(tight=True)
fig.savefig('fig1.jpg', dpi=300)

绘制结果如下:

无论是形状,字体看上去都并不专业。如果我们稍加改造,使用SciencePlots中Science的提交格式,上面的图片就会变为:

无论是坐标轴的刻度线,字体都变得高大上了很多。具体的做法也非常简单,只需要一行简单的with语句就可以完成字体,坐标轴,图例等诸多任务,代码为:

with plt.style.context(['science']):fig, ax = plt.subplots()        for p in [10, 15, 20, 30, 50, 100]:               ax.plot(x, model(x, p), label=p)        ax.legend(title='Order')        ax.set(xlabel='Voltage (mV)')        ax.set(ylabel='Current ($\mu$A)')        ax.autoscale(tight=True)        fig.savefig('figures/fig1.pdf')        fig.savefig('figures/fig1.jpg', dpi=300)

OK,SCI中了,现在我们需要投个CVPR什么的了。IEEE要求黑白印刷出来的文章也需要能够区分颜色。之前我们还需要查IEEE颜色表什么的,但是现在,类似的,我们只需要修改一下with语句,就可以得到IEEE样式的:

with plt.style.context(['science', 'ieee']):fig, ax = plt.subplots()    for p in [10, 20, 50]:       ax.plot(x, model(x, p), label=p)    ax.legend(title='Order')    ax.set(xlabel='Voltage (mV)')    ax.set(ylabel='Current ($\mu$A)')    ax.autoscale(tight=True)    fig.savefig('figures/fig2.pdf')    fig.savefig('figures/fig2.jpg', dpi=300)

图片的效果则变为了:

除了二维的线图(line plot),散点图同样可以绘制:

with plt.style.context(['science', 'scatter']):    fig, ax = plt.subplots(figsize=(4,4))    ax.plot([-2, 2], [-2, 2], 'k--')    ax.fill_between([-2, 2], [-2.2, 1.8], [-1.8, 2.2], color='dodgerblue', alpha=0.2, lw=0)    for i in range(7):        x1 = np.random.normal(0, 0.5, 10)        y1 = x1 + np.random.normal(0, 0.2, 10)        ax.plot(x1, y1, label=r"$^\#${}".format(i+1))    ax.legend(title='Sample', loc=2)    ax.set_xlabel(r"$\log_{10}\left(\frac{L_\mathrm{IR}}{\mathrm{L}_\odot}\right)$")    ax.set_ylabel(r"$\log_{10}\left(\frac{L_\mathrm{6.2}}{\mathrm{L}_\odot}\right)$")    ax.set_xlim([-2, 2])    ax.set_ylim([-2, 2])    fig.savefig('figures/fig3.pdf')    fig.savefig('figures/fig3.jpg', dpi=300)

图片结果如下:

除了不同样式,不同杂志之外,SciencePlots同样提供了不同风格的配色方案,高对比度(high-vis)风格。

颜色明快(bright)风格:

活泼配色(vibrant)风格:

没那么花哨(muted)的风格:

复古(retro)的风格:

最有意思的是,不知道是不是怕从Apple Store下架,SciencePlots还加了一个黑色模式(dark_background)。

想要了解更多有关SciencePlots的内容,可以去SciencePlots的官方Github了解更多。

Github链接附上: https://github.com/garrettj403/SciencePlots。

AIZOO,打造中国最大的深度学习和人工智能社区,欢迎关注我们,也欢迎添加下方小助手的微信,邀请您加入我们的千人深度学习爱好者社区。

欢迎扫描下方的二维码添加小助手微信,邀请您加入我们的微信交流群。

群里有多位清北复交的大佬和众多深度学习er在一起愉快的交流技术,欢迎你的加入哦。

 添加小助手微信,邀您进AIZOO技术交流群

听说点在看的,论文都会发到手软~

这篇关于简单好用的深度学习论文绘图专用工具包--Science Plot的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/999455

相关文章

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

使用IntelliJ IDEA创建简单的Java Web项目完整步骤

《使用IntelliJIDEA创建简单的JavaWeb项目完整步骤》:本文主要介绍如何使用IntelliJIDEA创建一个简单的JavaWeb项目,实现登录、注册和查看用户列表功能,使用Se... 目录前置准备项目功能实现步骤1. 创建项目2. 配置 Tomcat3. 项目文件结构4. 创建数据库和表5.

使用PyQt5编写一个简单的取色器

《使用PyQt5编写一个简单的取色器》:本文主要介绍PyQt5搭建的一个取色器,一共写了两款应用,一款使用快捷键捕获鼠标附近图像的RGB和16进制颜色编码,一款跟随鼠标刷新图像的RGB和16... 目录取色器1取色器2PyQt5搭建的一个取色器,一共写了两款应用,一款使用快捷键捕获鼠标附近图像的RGB和16

四种简单方法 轻松进入电脑主板 BIOS 或 UEFI 固件设置

《四种简单方法轻松进入电脑主板BIOS或UEFI固件设置》设置BIOS/UEFI是计算机维护和管理中的一项重要任务,它允许用户配置计算机的启动选项、硬件设置和其他关键参数,该怎么进入呢?下面... 随着计算机技术的发展,大多数主流 PC 和笔记本已经从传统 BIOS 转向了 UEFI 固件。很多时候,我们也