代码随想录算法训练营第十七天 | 110. 平衡二叉树、257. 二叉树的所有路径、404. 左叶子之和

本文主要是介绍代码随想录算法训练营第十七天 | 110. 平衡二叉树、257. 二叉树的所有路径、404. 左叶子之和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[LeetCode] 110. 平衡二叉树

[LeetCode] 110. 平衡二叉树 文章解释

[LeetCode] 110. 平衡二叉树 视频解释

给定一个二叉树,判断它是否是

平衡二叉树

 

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:true

示例 2:

输入:root = [1,2,2,3,3,null,null,4,4]
输出:false

示例 3:

输入:root = []
输出:true

提示:

  • 树中的节点数在范围 [0, 5000]
  • -10^4 <= Node.val <= 10^4

自己看到题目的第一想法 

    1. 什么是平衡二叉树, 平衡二叉树的具体定义是什么呢?

看完代码随想录之后的想法

    1. 平衡二叉树的定义: 每一个节点的左子树和右子树的高度叉不大于一, 则说当前二叉树为平衡二叉树.

    2. 根据定义可以很本能的想到使用递归法来判断是否平衡二叉树. 假设当前节点为 node, 则先计算 node.left 的高度, 再计算 node.right 的高度. 如果 node.left 和 node.right 的差的绝对值大于 1, 则说明当前节点的左右子树破坏了平衡, 因此整颗树都不是平衡二叉树. 此时返回 -1. 如果 node.left 和 node.right 的差的绝对值不大于 1, 则将两者中的大者加一后, 返回给上一层函数.

    3. 一定要记得, 这里是要判断每一个节点是否平衡, 不是只单单判断跟节点的左右节点是否高度上满足平衡条件.

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
// 递归法
class Solution {public boolean isBalanced(TreeNode root) {if (root == null) {return true;}int leftHeight = getHeight(root.left);int rightHeight = getHeight(root.right);return leftHeight != -1 && rightHeight != -1 && Math.abs(leftHeight - rightHeight) <= 1;// 这个条件老是忘记}private int getHeight(TreeNode node) {if (node == null) {return 0;}        if (node.left == null && node.right == null) {return 1;} else {int leftHeight = getHeight(node.left);if (leftHeight == -1) { // 这个条件老是忘记return -1;}int rightHeight = getHeight(node.right);if (rightHeight == -1) { // 这个条件老是忘记return rightHeight;}if (Math.abs(leftHeight - rightHeight) > 1) {return -1;} else {return Math.max(leftHeight, rightHeight) + 1;}}}
}
/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
// 迭代法
class Solution {public boolean isBalanced(TreeNode root) {if (root == null) {return true;}Stack<TreeNode> nodes = new Stack<>();TreeNode node = null;nodes.push(root);int leftHeight = 0;int rightHeight = 0;while (!nodes.isEmpty()) {node = nodes.pop();leftHeight = getHeight(node.left);rightHeight = getHeight(node.right);if (Math.abs(leftHeight - rightHeight) > 1) {return false;}if (node.right != null) {nodes.push(node.right);}if (node.left != null) {nodes.push(node.left);}}return true;}private int getHeight(TreeNode node) {if (node == null) {return 0;}Stack<TreeNode> nodes = new Stack<>();int maxDepth = 0;int depth = 0;nodes.push(node);while (!nodes.isEmpty()) {node = nodes.pop();if (node != null) {nodes.push(node);nodes.push(null);depth++;if (node.right != null) {nodes.push(node.right);}if (node.left != null) {nodes.push(node.left);}} else {nodes.pop();depth--;}if (maxDepth < depth) {maxDepth = depth;}}return maxDepth;}
}

自己实现过程中遇到哪些困难

    1. 遇到了一个定义上理解错误的地方. 平衡二叉树的平衡, 说的是每个节点都是平衡的, 而不单单指跟节点的左右子节点是平衡的. 最极端的例子, 一个跟节点, 左节点开始的每个节点只有左节点, 右节点开始的每个节点只有右节点, 假设跟节点的左右子树高度都是3, 这时候当前子树并不是平衡的.

    2. 计算平衡二叉树高度的时候, 老是忘记判断迭代返回高度值为 -1 的情况. 说明对平衡二叉树的判断逻辑还掌握的不够清楚和彻底. 写博客的意义更多的是理清思路, 整理架构. 而现在的模式更像是在记流水账. 需要反思.

[LeetCode] 257. 二叉树的所有路径

[LeetCode] 257. 二叉树的所有路径 文章解释

[LeetCode] 257. 二叉树的所有路径 视频解释

自己看到题目的第一想法

解决的思路:

    1. 首先, 需要遍历整个二叉树.

    2. 当遇到叶子结点的时候, 记录一下当前的路径.

    3. 当遇到叶子结点并且记录过路径后, 需要将叶子结点从路径中删除.

疑惑点:

    如何找到当前叶子结点的上一个节点呢, 只有找到上一个节点, 才能继续遍历.

看完代码随想录之后的想法

    1. 递归法: 递归法的逻辑就是把所有遍历到的元素添加到路径列表里, 同时传给下一个子节点. 这样当到达叶子结点时, 叶子结点就知道从根节点到自己的路径是什么.

    2. 迭代法: 通过迭代法遍历元素,

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/// 递归解法1: 效率一般 49.36%
class Solution {public List<String> binaryTreePaths(TreeNode root) {List<String> result = new ArrayList<>();binaryTreePaths(root, new ArrayList<Integer>(), result);return result;}private void binaryTreePaths(TreeNode node, List<Integer> paths, List<String> result) {if (node == null) {return;}paths.add(node.val);StringBuilder strBuilder = new StringBuilder();if (node.left == null && node.right == null) {for (int i = 0; i < paths.size() - 1; i++) {strBuilder.append(paths.get(i) + "->");}strBuilder.append(paths.get(paths.size() - 1));result.add(strBuilder.toString());paths.remove(paths.size() - 1);return;}if (node.left != null) {binaryTreePaths(node.left, paths, result);}if (node.right != null) {binaryTreePaths(node.right, paths, result);}paths.remove(paths.size() - 1);}
}
/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/// 递归解法 1 的 StringBuilder 优化版: 
class Solution {public List<String> binaryTreePaths(TreeNode root) {List<String> result = new ArrayList<>();binaryTreePaths(root, "", result);return result;}private void binaryTreePaths(TreeNode node, String path, List<String> result) {if (node == null) {return;}StringBuilder strBuilder = new StringBuilder(path);strBuilder.append(node.val);if (node.left == null && node.right == null) {result.add(strBuilder.toString());return;}strBuilder.append("->");if (node.left != null) {binaryTreePaths(node.left, strBuilder.toString(), result);}if (node.right != null) {binaryTreePaths(node.right, strBuilder.toString(), result);}}
}
/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/// 迭代法: 49.36%
class Solution {public List<String> binaryTreePaths(TreeNode root) {List<String> result = new ArrayList<>();if (root == null) {return result;}Stack<TreeNode> nodes = new Stack<>();List<Integer> paths = new ArrayList<>();TreeNode node = null;nodes.push(root);while (!nodes.isEmpty()) {node = nodes.pop();if (node != null) {if (node.left == null && node.right == null) {StringBuilder strBuilder = new StringBuilder();for (int i = 0; i < paths.size(); i++) {strBuilder.append(paths.get(i)).append("->");}strBuilder.append(node.val);result.add(strBuilder.toString());}nodes.push(node);nodes.push(null);paths.add(node.val);if (node.right != null) {nodes.push(node.right);}if (node.left != null) {nodes.push(node.left);}} else {nodes.pop();paths.remove(paths.size() - 1);}}return result;}
}

[LeetCode] 404. 左叶子之和

[LeetCode] 404. 左叶子之和 文章解释

[LeetCode] 404. 左叶子之和 视频解释

自己看到题目的第一想法

    先看了视频, 所以好像没有什么自己的思考.

    1. 遍历二叉树, 遇到叶子结点的时候, 判断一下当前节点是不是左节点, 是的话将值加入到统计中.

    2. 遍历二叉树的时候不知道当前节点是否是父节点的左节点, 可以采用递归的方式, 将当前节点的父节点传递下来, 或者用一个变量标记当前节点是否是左节点.

    3. 好像整体也没有很难.

看完代码随想录之后的想法

    1. 最核心的部分就是, 如果不使用额外信息的时候. 我们在递归三部曲的循环结束条件中, 需要添加对左侧叶子结点的判断.  即  node.left != null && node.left.left != null && node.left.right != null.

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
// 递归解法
class Solution {public int sumOfLeftLeaves(TreeNode root) {if (root == null) {return 0;}int leftTreeSum = 0;int rightTreeSum = 0;if (root.left != null && root.left.left == null && root.left.right == null) {leftTreeSum = root.left.val;} else {leftTreeSum = sumOfLeftLeaves(root.left);}rightTreeSum = sumOfLeftLeaves(root.right);return leftTreeSum + rightTreeSum;}
}
/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
// 迭代解法
class Solution {public int sumOfLeftLeaves(TreeNode root) {if (root == null) {return 0;}Stack<TreeNode> nodes = new Stack<>();TreeNode node = null;nodes.push(root);int sum = 0;while (!nodes.isEmpty()) {node = nodes.pop();if (node.right != null) {nodes.push(node.right);}if (node.left != null && node.left.left == null&& node.left.right == null) {sum += node.left.val;} else if (node.left != null) {nodes.push(node.left);}}return sum;}
}

自己实现过程中遇到哪些困难

    使用迭代实现的时候, 很难想到什么时候要用标记法, 什么时候不需要.

    虽然递归的单次循环条件也时常想不明白, 但是整体来说, 递归方案会更容易调试出来.

    要怎么梳理, 才能让自己掌握得更好呢?

这篇关于代码随想录算法训练营第十七天 | 110. 平衡二叉树、257. 二叉树的所有路径、404. 左叶子之和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/999393

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

安卓链接正常显示,ios#符被转义%23导致链接访问404

原因分析: url中含有特殊字符 中文未编码 都有可能导致URL转换失败,所以需要对url编码处理  如下: guard let allowUrl = webUrl.addingPercentEncoding(withAllowedCharacters: .urlQueryAllowed) else {return} 后面发现当url中有#号时,会被误伤转义为%23,导致链接无法访问

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n