高并发下漏洞桶限流设计方案 - Redis

2024-05-24 14:38

本文主要是介绍高并发下漏洞桶限流设计方案 - Redis,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:低调的码农
链接:https://juejin.im/post/5d11cef9e51d4550a629b2a6
来源:掘金

背景

在我们做社区的时候,经常会出现发水帖的同学。对于这种恶意刷帖的,我们的运营同学很是头疼,而且这种还不能在网关进行ip之类的过滤,只能基于单个单个用户进行处理,我们经常策略就是:每分钟发帖次数不能超过2个,超过后就关小黑屋10分钟。

出现场景:

  1. 上面讲的发帖的防刷机制。

  2. 广告流量的防刷。

  3. 接口请求失败进行熔断机制处理。

  4. ......

解决方案

对于这种“黑恶”请求,我们必须要做到是关小黑屋,当然有的系统架构比较大的,在网关层面就已经进行关了,我们这里是会在业务层来做,因为咱业务不是很大,当然同学们也可以把这个移植到网关层,这样不用穿透到我们业务侧,最少能够减少我们机房内部网络流量。

流程图

流程说明

  1. 接口发起请求,服务端获取这个接口用户唯一标识(用户id,电话号码...).

  2. 判断该用户是否被锁住,如果锁住就直接返回错误码。

  3. 未锁住就将该请求标记,亦或者叠加(叠加有坑,往下面看)。

  4. 进行计算当前用户在一定时间内是否超过我们设置的阈值。如果未超过直接返回。

  5. 如果超过,那么就进行锁定,再返回,下次请求的时候再进行判断。

具体方案

以我们场景为例子,使用Redis来做分布式锁和原子计数器,时间内叠加,判断叠加值是否超过阈值。

这个方案,在很多人设计的时候,都会考虑,看起来也没有太大问题,主要流程是:

  1. 假设我们使用Redis来进行原子计数,每次进来我们进行incr操作,并且将我们的key设置为一个阈值过期时间.

//将我们用户请求量叠加1$request_nums = Redis::incr('user:1:request:nums',1);//第一次叠加,设置key的过期时间if ($request_nums == 1){    Redis::expire('user:1:request:nums',300);}

if($request_nums > 10){//加入小黑屋,下次再进来就要锁定判断}
  1. 每次请求会优先进行叠加,然后在这个有效区间内,计算我们的请求次数,如果请求次数超过阈值,那么关小黑屋,要是没有就继续走下去。

问题:咋一看是没有问题,每次计算都在我的区间内,能够保证一个区间内的请求量是没问题的,而且还是要我们Redis的原子计数器,但是这里有一个问题是,一个用户两个时间段内都没有问题,但是跨时间段这个点是没有考虑的。

那么有办法解决这个时间推移问题造成时间段计算量不精准的问题吗?

答案是肯定有,我接下来是使用了Redis的有序集合来做。

请求不进行时间段区分,直接写入有序集合

大致流程:

  1. 每次请求就写入有序集合里面,集合的sorce值是当前毫秒时间戳(防止秒出现重复),可以认为每一次请求就一个时间戳在里面。

  2. 从集合里面去掉10分钟以前所有的集合数据。然后计算出当前的集合里面数量

  3. 根据这个数量来与我们阈值做大小判断,如果超过就锁住,否则继续走下去

//将我们时间戳写入我们redis的有序集合里面 Redis::zadd('user:1:request:nums',1561456435,'1561456435.122');//设置key的过期时间为10分钟Redis::expire('user:1:request:nums',300);//删除我们10分钟以前的数据Redis::ZREMRANGEBYSCORE('user:1:request:nums',0,1561456135);//获取里面剩下请求个数$request_nums=(int)Redis::zcard(self::TIMELINE_ELEVEL_KEY);if($request_nums >= 10){//加入小黑屋,下次再进来就要锁定判断}...

因为我们不是单纯记录数值,而是会将请求时间记录下来,那么随着时间推移,我们的请求数统计是不会断代的。

总结

  1. 在开始的时候,我一直在想第一个方案的问题所在,后来在讨论方案时候,总是发现时间移动,数值应该是会更改,可在第一个方案内,我们的请求量是不会更改,我们时间段已经固化成数值了。

  2. 整体的方案设计我们使用到的Redis的有序集合来做,当然有更好的方案欢迎大家来推荐哈,这个对于redis的读写压力很大的,但是作为临时的数据存储,这个场景还是比较符合。

  3. 我们redis的所有操作建议使用原子化来进行,这个可以使用官方提供的lua脚本来将多个语句合并成一个语句,并且lua执行速率也是很高。

这篇关于高并发下漏洞桶限流设计方案 - Redis的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/998690

相关文章

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

修复已被利用的高危漏洞! macOS Sequoia 15.6.1发布

《修复已被利用的高危漏洞!macOSSequoia15.6.1发布》苹果公司于今日发布了macOSSequoia15.6.1更新,这是去年9月推出的macOSSequoia操作... MACOS Sequoia 15.6.1 正式发布!此次更新修复了一个已被黑客利用的严重安全漏洞,并解决了部分中文用户反馈的

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Redis实现分布式锁全过程

《Redis实现分布式锁全过程》文章介绍Redis实现分布式锁的方法,包括使用SETNX和EXPIRE命令确保互斥性与防死锁,Redisson客户端提供的便捷接口,以及Redlock算法通过多节点共识... 目录Redis实现分布式锁1. 分布式锁的基本原理2. 使用 Redis 实现分布式锁2.1 获取锁

Redis中哨兵机制和集群的区别及说明

《Redis中哨兵机制和集群的区别及说明》Redis哨兵通过主从复制实现高可用,适用于中小规模数据;集群采用分布式分片,支持动态扩展,适合大规模数据,哨兵管理简单但扩展性弱,集群性能更强但架构复杂,根... 目录一、架构设计与节点角色1. 哨兵机制(Sentinel)2. 集群(Cluster)二、数据分片