(转)Spark core中的cache、persist区别,以及缓存级别详解

2024-05-24 10:32

本文主要是介绍(转)Spark core中的cache、persist区别,以及缓存级别详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【转发原因:cache、persist很透彻】

【转载原文:https://blog.csdn.net/yu0_zhang0/article/details/80424609】

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

本文链接:https://blog.csdn.net/yu0_zhang0/article/details/80424609

概述

本次我们将学习Spark core中的cache操作以及和 persist的区别。首先大家可能想到的是cache到底是什么呢?他有什么作用呢?我们可以带着这两个问题进行下面的学习。
本文结构:
1. cache的产生背景
2. cache的作用
3. 源码解析cache于persist的区别,以及缓存级别详解

1 cache的产生背景

我们先做一个简单的测试读取一个本地文件做一次collect操作

val rdd=sc.textFile("file:///home/hadoop/data/input.txt")
val rdd=sc.textFile("file:///home/hadoop/data/input.txt")

上面我们进行了两次相同的操作,观察日志我们发现这样一句话Submitting ResultStage 0 (file:///home/hadoop/data/input.txt MapPartitionsRDD[1] at textFile at <console>:25), which has no missing parents,每次都要去本地读取input.txt文件,这里大家能想到存在什么问题吗? 如果我的文件很大,每次都对相同的RDD进行同一个action操作,那么每次都要到本地读取文件,得到相同的结果。不断进行这样的重复操作,耗费资源浪费时间啊。这时候我们可能想到能不能把RDD保存在内存中呢?答案是可以的,这就是我们所要学习的cache。

2 cache的作用

通过上面的讲解我们知道,有时候很多地方都会用到同一个RDD, 那么每个地方遇到Action操作的时候都会对同一个算子计算多次,这样会造成效率低下的问题。通过cache操作可以把RDD持久化到内存或者磁盘。
现在我们利用上面说的例子,把rdd进行cache操作
rdd.cache这时候我们打开192.168.137.130:4040界面查看storage界面中是否有我们的刚才cache的文件,发现并没有。这时候我们进行一个action操作rdd.count。继续查看storage是不是有东西了哈,
这里写图片描述
并且给我们列出了很多信息,存储级别(后面详解),大小(会发现要比源文件大,这也是一个调优点)等等。
说到这里小伙伴能能想到什么呢? cacha是一个Tranformation还是一个Action呢?相信大伙应该知道了。
cache这个方法也是个Tranformation,当第一次遇到Action算子的时才会进行持久化,所以说我们第一次进行了cache操作在ui中并没有看到结果,进行了count操作才有。

3 源码解析cache于persist的区别,以及缓存级别详解

Spark版本:2.2.0

  • 源码分析
  /*** Persist this RDD with the default storage level (`MEMORY_ONLY`).*/def cache(): this.type = persist()

从源码中可以明显看出cache()调用了persist(), 想要知道二者的不同还需要看一下persist函数:
(这里注释cache的storage level)

/*** Persist this RDD with the default storage level (`MEMORY_ONLY`).*/def persist(): this.type = persist(StorageLevel.MEMORY_ONLY)

可以看到persist()内部调用了persist(StorageLevel.MEMORY_ONLY),是不是和上面对上了哈,这里我们能够得出cache和persist的区别了:cache只有一个默认的缓存级别MEMORY_ONLY ,而persist可以根据情况设置其它的缓存级别。
我相信小伙伴们肯定很好奇这个缓存级别到底有多少种呢?我们继续怼源码看看:

*** :: DeveloperApi ::* Flags for controlling the storage of an RDD. Each StorageLevel records whether to use memory,* or ExternalBlockStore, whether to drop the RDD to disk if it falls out of memory or* ExternalBlockStore, whether to keep the data in memory in a serialized format, and whether* to replicate the RDD partitions on multiple nodes.** The [[org.apache.spark.storage.StorageLevel]] singleton object contains some static constants* for commonly useful storage levels. To create your own storage level object, use the* factory method of the singleton object (`StorageLevel(...)`).*/
@DeveloperApi
class StorageLevel private(private var _useDisk: Boolean,private var _useMemory: Boolean,private var _useOffHeap: Boolean,private var _deserialized: Boolean,private var _replication: Int = 1)extends Externalizable 

 

我们先来看看存储类型,源码中我们可以看出有五个参数,分别代表:

useDisk:使用硬盘(外存);

useMemory:使用内存;

useOffHeap:使用堆外内存,这是Java虚拟机里面的概念,堆外内存意味着把内存对象分配在Java虚拟机的堆以外的内存,这些内存直接受操作系统管理(而不是虚拟机)。这样做的结果就是能保持一个较小的堆,以减少垃圾收集对应用的影响。这部分内存也会被频繁的使用而且也可能导致OOM,它是通过存储在堆中的DirectByteBuffer对象进行引用,可以避免堆和堆外数据进行来回复制;

deserialized:反序列化,其逆过程序列化(Serialization)是java提供的一种机制,将对象表示成一连串的字节;而反序列化就表示将字节恢复为对象的过程。序列化是对象永久化的一种机制,可以将对象及其属性保存起来,并能在反序列化后直接恢复这个对象;

replication:备份数(在多个节点上备份,默认为1)。

我们接着看看缓存级别:

/*** Various [[org.apache.spark.storage.StorageLevel]] defined and utility functions for creating* new storage levels.*/
object StorageLevel {val NONE = new StorageLevel(false, false, false, false)val DISK_ONLY = new StorageLevel(true, false, false, false)val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)val MEMORY_ONLY = new StorageLevel(false, true, false, true)val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2)val OFF_HEAP = new StorageLevel(true, true, true, false, 1)

可以看到这里列出了12种缓存级别,**但这些有什么区别呢?**可以看到每个缓存级别后面都跟了一个StorageLevel的构造函数,里面包含了4个或5个参数,和上面说的存储类型是相对应的,四个参数是因为有一个是有默认值的。
好吧这里我又想问小伙伴们一个问题了,这几种存储方式什么意思呢?该如何选择呢?
官网上进行了详细的解释。我这里介绍一个有兴趣的同学可以去官网看看哈。

  • MEMORY_ONLY
    使用反序列化的Java对象格式,将数据保存在内存中。如果内存不够存放所有的数据,某些分区将不会被缓存,并且将在需要时重新计算。这是默认级别。

  • MEMORY_AND_DISK
    使用反序列化的Java对象格式,优先尝试将数据保存在内存中。如果内存不够存放所有的数据,会将数据写入磁盘文件中,下次对这个RDD执行算子时,持久化在磁盘文件中的数据会被读取出来使用。

  • MEMORY_ONLY_SER((Java and Scala))
    基本含义同MEMORY_ONLY。唯一的区别是,会将RDD中的数据进行序列化,RDD的每个partition会被序列化成一个字节数组。这种方式更加节省内存,但是会加大cpu负担。

  • 一个简单的案例感官行的认识存储级别的差别

19M     page_views.datval rdd1=sc.textFile("file:///home/hadoop/data/page_views.dat")rdd1.persist().count

ui查看缓存大小
这里写图片描述
是不是明显变大了,我们先删除缓存rdd1.unpersist()

  • 使用MEMORY_ONLY_SER级别
import org.apache.spark.storage.StorageLevel
rdd1.persist(StorageLevel.MEMORY_ONLY_SER)
rdd1.count

 

这里写图片描述
这里我就用这两种方式进行对比,大家可以试试其他方式。

那如何选择呢?哈哈官网也说了。
你可以在内存使用和CPU效率之间来做出不同的选择不同的权衡。

  1. 默认情况下,性能最高的当然是MEMORY_ONLY,但前提是你的内存必须足够足够大,可以绰绰有余地存放下整个RDD的所有数据。因为不进行序列化与反序列化操作,就避免了这部分的性能开销;对这个RDD的后续算子操作,都是基于纯内存中的数据的操作,不需要从磁盘文件中读取数据,性能也很高;而且不需要复制一份数据副本,并远程传送到其他节点上。但是这里必须要注意的是,在实际的生产环境中,恐怕能够直接用这种策略的场景还是有限的,如果RDD中数据比较多时(比如几十亿),直接用这种持久化级别,会导致JVM的OOM内存溢出异常。
  2. 如果使用MEMORY_ONLY级别时发生了内存溢出,那么建议尝试使用MEMORY_ONLY_SER级别。该级别会将RDD数据序列化后再保存在内存中,此时每个partition仅仅是一个字节数组而已,大大减少了对象数量,并降低了内存占用。这种级别比MEMORY_ONLY多出来的性能开销,主要就是序列化与反序列化的开销。但是后续算子可以基于纯内存进行操作,因此性能总体还是比较高的。此外,可能发生的问题同上,如果RDD中的数据量过多的话,还是可能会导致OOM内存溢出的异常。
  3. 不要泄漏到磁盘,除非你在内存中计算需要很大的花费,或者可以过滤大量数据,保存部分相对重要的在内存中。否则存储在磁盘中计算速度会很慢,性能急剧降低。
  4. 后缀为_2的级别,必须将所有数据都复制一份副本,并发送到其他节点上,数据复制以及网络传输会导致较大的性能开销,除非是要求作业的高可用性,否则不建议使用。

4 删除缓存中的数据

spark自动监视每个节点上的缓存使用,并以最近最少使用的(LRU)方式丢弃旧数据分区。如果您想手动删除RDD,而不是等待它从缓存中掉出来,请使用 RDD.unpersist()方法。

这篇关于(转)Spark core中的cache、persist区别,以及缓存级别详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/998153

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

Go路由注册方法详解

《Go路由注册方法详解》Go语言中,http.NewServeMux()和http.HandleFunc()是两种不同的路由注册方式,前者创建独立的ServeMux实例,适合模块化和分层路由,灵活性高... 目录Go路由注册方法1. 路由注册的方式2. 路由器的独立性3. 灵活性4. 启动服务器的方式5.

Java中八大包装类举例详解(通俗易懂)

《Java中八大包装类举例详解(通俗易懂)》:本文主要介绍Java中的包装类,包括它们的作用、特点、用途以及如何进行装箱和拆箱,包装类还提供了许多实用方法,如转换、获取基本类型值、比较和类型检测,... 目录一、包装类(Wrapper Class)1、简要介绍2、包装类特点3、包装类用途二、装箱和拆箱1、装