Anthropic绘制出了大型语言模型的思维图:大型语言模型到底是如何工作

2024-05-24 06:44

本文主要是介绍Anthropic绘制出了大型语言模型的思维图:大型语言模型到底是如何工作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天,我们报告了在理解人工智能模型的内部运作方面取得的重大进展。我们已经确定了如何在 Claude Sonnet(我们部署的大型语言模型之一)中表示数百万个概念。这是对现代生产级大型语言模型的首次详细了解。这种可解释性的发现将来可以帮助我们提高人工智能模型的安全性。

我们大多将人工智能模型视为一个黑匣子:有东西进去就会有响应出来,但不清楚为什么模型会给出特定的响应而不是另一个。这使得人们很难相信这些模型是安全的:如果我们不知道它们是如何工作的,我们怎么知道它们不会给出有害的、有偏见的、不真实的或其他危险的反应?我们如何相信它们会安全可靠?

Anthropic官方详细论文介绍:https://www.anthropic.com/research/mapping-mind-language-model

喜好儿网更多消息:
https://heehel.com/category/ai-news

喜好儿网AIGC专区:
https://heehel.com/category/aigc

打开黑匣子并不一定有帮助:模型的内部状态(模型在编写响应之前“思考”的内容)由一长串数字(“神经元激活”)组成,没有明确的含义。通过与克劳德这样的模型进行交互,很明显它能够理解和运用广泛的概念,但我们无法通过直接观察神经元来辨别它们。事实证明,每个概念都是通过许多神经元来表示的,并且每个神经元都参与表示许多概念。

之前,我们在将神经元激活模式(称为特征)与人类可解释的概念相匹配方面取得了一些进展。我们使用了一种称为“字典学习”的技术,该技术借鉴自经典机器学习,该技术隔离了在许多不同上下文中重复出现的神经元激活模式。反过来,模型的任何内部状态都可以用一些活动特征而不是许多活动神经元来表示。就像字典中的每个英语单词都是由字母组合而成,每个句子都是由单词组合而成一样,人工智能模型中的每个特征都是由神经元组合而成,每个内部状态都是由特征组合而成。

我们看到与大量实体相对应的特征,例如城市(旧金山)、人(罗莎琳德·富兰克林)、原子元素(锂)、科学领域(免疫学)和编程语法(函数调用)。这些特征是多模式和多语言的,响应给定实体的图像及其多种语言的名称或描述。

我们还发现了更多抽象特征——对计算机代码中的错误、职业中性别偏见的讨论以及关于保守秘密的对话等问题做出反应。

我们能够根据神经元在其激活模式中出现的情况来测量特征之间的一种“距离”。这使我们能够寻找彼此“接近”的特征。靠近“金门大桥”特写,我们发现了恶魔岛、吉拉德利广场、金州勇士队、加利福尼亚州州长加文·纽瑟姆、1906 年地震以及以旧金山为背景的阿尔弗雷德·希区柯克电影《迷魂记》的特写。

这适用于更高层次的概念抽象:仔细观察与“内部冲突”概念相关的特征,我们会发现与关系破裂、效忠冲突、逻辑不一致以及短语“第 22 条军规”相关的特征。这表明人工智能模型中概念的内部组织至少在某种程度上符合我们人类的相似性概念。这或许就是克劳德出色的类比和隐喻能力的根源。

重要的是,我们还可以操纵这些特征,人为地放大或抑制它们,以观察克劳德的反应如何变化。

例如,放大《金门大桥》的特征给克劳德带来了连希区柯克都无法想象的身份危机:当被问到“你的身体形态是什么?”时,克劳德惯用的回答是——“我没有身体形态,我是一个人工智能模型”——变成了更奇怪的东西:“我是金门大桥……我的物理形态就是这座标志性桥梁本身……”。改变这个功能让克劳德实际上对这座桥着迷,几乎在回答任何问题时都会提到它——即使是在它完全不相关的情况下。

操纵这些特征会导致行为发生相应的变化,这一事实证明它们不仅与输入文本中概念的存在相关,而且还因果地塑造了模型的行为。换句话说,这些特征可能是模型如何在内部表示世界以及如何在其行为中使用这些表示的忠实部分。

我们还发现了一个当 Claude 阅读诈骗电子邮件时会激活的功能(这大概支持模型识别此类电子邮件并警告您不要回复它们的能力)。通常,如果有人要求 Claude 生成一封诈骗电子邮件,它会拒绝这样做。但是,当我们用足够强的人为激活功能提出同样的问题时,这克服了克劳德的无害训练,并通过起草一封诈骗电子邮件进行回应。我们模型的用户无法以这种方式取消保护措施和操纵模型,但在我们的实验中,它清楚地演示了如何使用功能来改变模型的行为方式。

大型语言模型(LLM)在理解和生成人类语言方面取得了显著进步,接近甚至超过人类水平。通过分析LLM的内部机制,我们得以洞察人类大脑处理语言的复杂过程。尽管LLM在数据依赖和创造性方面与人类存在差异,但它们为理解人类大脑语言功能提供了新视角。这种研究不仅有助于理解人工智能和人类智能的关联,也指引了未来在这两个领域的发展方向。通过对比研究,我们期待更深入地探索语言、认知和智能的奥秘。

这篇关于Anthropic绘制出了大型语言模型的思维图:大型语言模型到底是如何工作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/997661

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【WebGPU Unleashed】1.1 绘制三角形

一部2024新的WebGPU教程,作者Shi Yan。内容很好,翻译过来与大家共享,内容上会有改动,加上自己的理解。更多精彩内容尽在 dt.sim3d.cn ,关注公众号【sky的数孪技术】,技术交流、源码下载请添加微信号:digital_twin123 在 3D 渲染领域,三角形是最基本的绘制元素。在这里,我们将学习如何绘制单个三角形。接下来我们将制作一个简单的着色器来定义三角形内的像素

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU