Flink-cdc更好的流式数据集成工具

2024-05-24 06:12

本文主要是介绍Flink-cdc更好的流式数据集成工具,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

What’s Flink-cdc?

在这里插入图片描述

Flink CDC 是基于Apache Flink的一种数据变更捕获技术,用于从数据源(如数据库)中捕获和处理数据的变更事件。CDC技术允许实时地捕获数据库中的增、删、改操作,将这些变更事件转化为流式数据,并能够对这些事件进行实时处理和分析。

Flink CDC提供了与各种数据源集成的功能,包括常见的关系型数据库(如MySQL、PostgreSQL、Oracle等)以及NoSQL数据库(如MongoDB、HBase等)。它通过监控数据库的日志或轮询方式来捕获数据变更,并将变更事件作为数据流发送到Flink的任务中进行处理。

Flink CDC 深度集成并由 Apache Flink 驱动,提供以下核心功能:

✅ 端到端的数据集成框架
✅ 为数据集成的用户提供了易于构建作业的 API
✅ 支持在 Source 和 Sink 中处理多个表
✅ 整库同步
✅具备表结构变更自动同步的能力(Schema Evolution)

在使用者的角度,就是Flink-cdc可以简化流处理的流程:

  • 引入Flink-cdc之前流处理流程
    在这里插入图片描述

  • 引入Flink-cdc之后后流处理流程
    在这里插入图片描述
    如上所示,在flink-cdc被引入后大大简化了流处理流程

Flink-cdc支持的链接及对应的版本

Pipeline Connectors
在这里插入图片描述
Source Connectors
在这里插入图片描述截止目前(2024-05-23)

Flink-cdc与Flink对应对影版本的关系

在这里插入图片描述截止目前(2024-05-23)

flink-connector-mysql-cdc 实例分析

示例代码

demo代码:

import com.ververica.cdc.connectors.mysql.source.MySqlSource;
import com.ververica.cdc.connectors.mysql.table.StartupOptions;
import com.ververica.cdc.debezium.JsonDebeziumDeserializationSchema;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.runtime.state.hashmap.HashMapStateBackend;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;public class MySqlSourceDemo {public static void main(String[] args) throws Exception {MySqlSource<String> mySqlSource = MySqlSource.<String>builder().hostname("mysql-server-host").port(3306).databaseList("mydb") // 设置捕获的数据库.tableList("mydb.products") // 设置捕获的表,如果需要同步整个数据库,请将 tableList 设置为 ".*".
//                .tableList(".*") // 捕获整个数据库的表
//                .tableList("^(?!mysql|information_schema|performance_schema).*") // 设置捕获的表,排除系统库
//                .tableList("mydb.(?!products|orders).*") // 同步排除products和orders表之外的整个my_db库.username("flink-cdc").password("xxx").serverId("5400-5405").deserializer(new JsonDebeziumDeserializationSchema()) // 将 SourceRecord 转换为 JSON 字符串.serverTimeZone("Asia/Shanghai") // 设置时区.startupOptions(StartupOptions.initial()).scanNewlyAddedTableEnabled(true) // 启用扫描新添加的表功能
//                .includeSchemaChanges(true) // 包括 schema 变更.build();org.apache.flink.configuration.Configuration config = new org.apache.flink.configuration.Configuration();config.setString("rest.port", "8081");
//        StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironment(config); //本地环境,调试用StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 设置 3s 的 checkpoint 间隔env.enableCheckpointing(3000);env.setStateBackend(new HashMapStateBackend());env.getCheckpointConfig().setCheckpointStorage("file:///tmp/ck");//本地文件系统
//        env.getCheckpointConfig().setExternalizedCheckpointCleanup(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION); 1.14.0 版本开始支持env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);env.fromSource(mySqlSource, WatermarkStrategy.noWatermarks(), "MySQL Source")// 设置 source 节点的并行度为 4.setParallelism(5).print().setParallelism(1); // 设置 sink 节点并行度为 1env.execute("Print MySQL Snapshot + Binlog");}
}

maven依赖:

<properties><maven.compiler.source>8</maven.compiler.source><maven.compiler.target>8</maven.compiler.target><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><flink.version>1.14.5</flink.version><scala.binary.version>2.12</scala.binary.version></properties><dependencies><dependency><groupId>junit</groupId><artifactId>junit</artifactId><scope>test</scope></dependency><!-- 将 Apache Flink 的 Web 运行时模块添加到项目中 --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-runtime-web_${scala.binary.version}</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients_${scala.binary.version}</artifactId><version>${flink.version}</version><scope>provided</scope> <!--provided生命周期在test模式才可以运行,在main模式会找不到包--></dependency><dependency><groupId>com.ververica</groupId><artifactId>flink-connector-mysql-cdc</artifactId><version>2.3.0</version><scope>compile</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-common</artifactId><version>${flink.version}</version><scope>compile</scope></dependency><dependency><groupId>org.slf4j</groupId><artifactId>slf4j-log4j12</artifactId><version>1.7.25</version><scope>provided</scope></dependency></dependencies>

日志配置文件:
log4j.properties

log4j.rootCategory=error,stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.target=System.out
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %p %c{1}:%L - %m%n

启动standalone Flink级群

# jobmanager
docker run -d \
--name flink-jm \
--hostname flink-jm \
-p 8082:8081 \
--env FLINK_PROPERTIES="jobmanager.rpc.address: flink-jm" \
--network flink-network-standalone \
ponylee/flink:1.15.0-java8  \
jobmanager# taskmanager
docker run -d \
--name flink-tm \
--hostname flink-tm \
--env FLINK_PROPERTIES="jobmanager.rpc.address: flink-jm" \
--network flink-network-standalone \
ponylee/flink:1.15.0-java8 \
taskmanager \
-Dtaskmanager.memory.process.size=1024m \
-Dtaskmanager.numberOfTaskSlots=5 \
-Drest.flamegraph.enabled=true

分析说明

为每个 Reader 设置不同的 Server id

每个用于读取 binlog 的 MySQL 数据库客户端都应该有一个唯一的 id,称为 Server id。 MySQL 服务器将使用此 id 来维护网络连接和 binlog 位置。 因此,如果不同的作业共享相同的 Server id, 则可能导致从错误的 binlog 位置读取数据。 因此,建议通过为每个 Reader 设置不同的 Server id , 假设 Source 并行度为 4,server id 配置必须:serverId(“5400-5405”),5405-5400=5 >= 4。来为 4 个 Source readers 中的每一个分配唯一的 Server id。

查看mysql链接发现
select * from information_schema.processlist where user = ‘flink-cdc’;
在这里插入图片描述Flink-cdc对mysql的影响
正常情况下,Flink-cdc是No-lock Read,主库可以继续处理事务和查询,而不会导致主库进程阻塞,对主库产生直接影响。但是,在某些情况下数据同步的过程中可能会对主库产生一些间接影响,比如:网络、IO、CPU负载以及mysql的并发连接数等资源消耗。但这些对主库的开销影响相对较小(全量同步阶段可能比较耗能,但时间相对比较短)。

断点续传

通过从checkpoint/savepoint 恢复,flink-cdc可以保证断点续传。

  • 从checkpoint/savepoint恢复,缩小同步范围,例如:从tableList(“mydb.products,mydb.orders”)或tableList(“.*”) 缩小到 tableList(“mydb.products”),应用更新生效。

  • 应用从checkpoint/savepoint恢复,扩大同步范围的部分不会生效,例如:从tableList(“mydb.products”) 到 tableList(“mydb.products,mydb.orders”)或tableList(“.*”),应用更新不生效生效。若想使动态加表生效,可以显示制定scanNewlyAddedTableEnabled(true) ,来启用扫描新添加的表功能。如没有特殊情况,建议在开发环境开启此配置。

参考:
flink-cdc
flink-cdc docs

这篇关于Flink-cdc更好的流式数据集成工具的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/997598

相关文章

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

利用Python开发Markdown表格结构转换为Excel工具

《利用Python开发Markdown表格结构转换为Excel工具》在数据管理和文档编写过程中,我们经常使用Markdown来记录表格数据,但它没有Excel使用方便,所以本文将使用Python编写一... 目录1.完整代码2. 项目概述3. 代码解析3.1 依赖库3.2 GUI 设计3.3 解析 Mark

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶