Flink-cdc更好的流式数据集成工具

2024-05-24 06:12

本文主要是介绍Flink-cdc更好的流式数据集成工具,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

What’s Flink-cdc?

在这里插入图片描述

Flink CDC 是基于Apache Flink的一种数据变更捕获技术,用于从数据源(如数据库)中捕获和处理数据的变更事件。CDC技术允许实时地捕获数据库中的增、删、改操作,将这些变更事件转化为流式数据,并能够对这些事件进行实时处理和分析。

Flink CDC提供了与各种数据源集成的功能,包括常见的关系型数据库(如MySQL、PostgreSQL、Oracle等)以及NoSQL数据库(如MongoDB、HBase等)。它通过监控数据库的日志或轮询方式来捕获数据变更,并将变更事件作为数据流发送到Flink的任务中进行处理。

Flink CDC 深度集成并由 Apache Flink 驱动,提供以下核心功能:

✅ 端到端的数据集成框架
✅ 为数据集成的用户提供了易于构建作业的 API
✅ 支持在 Source 和 Sink 中处理多个表
✅ 整库同步
✅具备表结构变更自动同步的能力(Schema Evolution)

在使用者的角度,就是Flink-cdc可以简化流处理的流程:

  • 引入Flink-cdc之前流处理流程
    在这里插入图片描述

  • 引入Flink-cdc之后后流处理流程
    在这里插入图片描述
    如上所示,在flink-cdc被引入后大大简化了流处理流程

Flink-cdc支持的链接及对应的版本

Pipeline Connectors
在这里插入图片描述
Source Connectors
在这里插入图片描述截止目前(2024-05-23)

Flink-cdc与Flink对应对影版本的关系

在这里插入图片描述截止目前(2024-05-23)

flink-connector-mysql-cdc 实例分析

示例代码

demo代码:

import com.ververica.cdc.connectors.mysql.source.MySqlSource;
import com.ververica.cdc.connectors.mysql.table.StartupOptions;
import com.ververica.cdc.debezium.JsonDebeziumDeserializationSchema;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.runtime.state.hashmap.HashMapStateBackend;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;public class MySqlSourceDemo {public static void main(String[] args) throws Exception {MySqlSource<String> mySqlSource = MySqlSource.<String>builder().hostname("mysql-server-host").port(3306).databaseList("mydb") // 设置捕获的数据库.tableList("mydb.products") // 设置捕获的表,如果需要同步整个数据库,请将 tableList 设置为 ".*".
//                .tableList(".*") // 捕获整个数据库的表
//                .tableList("^(?!mysql|information_schema|performance_schema).*") // 设置捕获的表,排除系统库
//                .tableList("mydb.(?!products|orders).*") // 同步排除products和orders表之外的整个my_db库.username("flink-cdc").password("xxx").serverId("5400-5405").deserializer(new JsonDebeziumDeserializationSchema()) // 将 SourceRecord 转换为 JSON 字符串.serverTimeZone("Asia/Shanghai") // 设置时区.startupOptions(StartupOptions.initial()).scanNewlyAddedTableEnabled(true) // 启用扫描新添加的表功能
//                .includeSchemaChanges(true) // 包括 schema 变更.build();org.apache.flink.configuration.Configuration config = new org.apache.flink.configuration.Configuration();config.setString("rest.port", "8081");
//        StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironment(config); //本地环境,调试用StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 设置 3s 的 checkpoint 间隔env.enableCheckpointing(3000);env.setStateBackend(new HashMapStateBackend());env.getCheckpointConfig().setCheckpointStorage("file:///tmp/ck");//本地文件系统
//        env.getCheckpointConfig().setExternalizedCheckpointCleanup(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION); 1.14.0 版本开始支持env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);env.fromSource(mySqlSource, WatermarkStrategy.noWatermarks(), "MySQL Source")// 设置 source 节点的并行度为 4.setParallelism(5).print().setParallelism(1); // 设置 sink 节点并行度为 1env.execute("Print MySQL Snapshot + Binlog");}
}

maven依赖:

<properties><maven.compiler.source>8</maven.compiler.source><maven.compiler.target>8</maven.compiler.target><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><flink.version>1.14.5</flink.version><scala.binary.version>2.12</scala.binary.version></properties><dependencies><dependency><groupId>junit</groupId><artifactId>junit</artifactId><scope>test</scope></dependency><!-- 将 Apache Flink 的 Web 运行时模块添加到项目中 --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-runtime-web_${scala.binary.version}</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients_${scala.binary.version}</artifactId><version>${flink.version}</version><scope>provided</scope> <!--provided生命周期在test模式才可以运行,在main模式会找不到包--></dependency><dependency><groupId>com.ververica</groupId><artifactId>flink-connector-mysql-cdc</artifactId><version>2.3.0</version><scope>compile</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-common</artifactId><version>${flink.version}</version><scope>compile</scope></dependency><dependency><groupId>org.slf4j</groupId><artifactId>slf4j-log4j12</artifactId><version>1.7.25</version><scope>provided</scope></dependency></dependencies>

日志配置文件:
log4j.properties

log4j.rootCategory=error,stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.target=System.out
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %p %c{1}:%L - %m%n

启动standalone Flink级群

# jobmanager
docker run -d \
--name flink-jm \
--hostname flink-jm \
-p 8082:8081 \
--env FLINK_PROPERTIES="jobmanager.rpc.address: flink-jm" \
--network flink-network-standalone \
ponylee/flink:1.15.0-java8  \
jobmanager# taskmanager
docker run -d \
--name flink-tm \
--hostname flink-tm \
--env FLINK_PROPERTIES="jobmanager.rpc.address: flink-jm" \
--network flink-network-standalone \
ponylee/flink:1.15.0-java8 \
taskmanager \
-Dtaskmanager.memory.process.size=1024m \
-Dtaskmanager.numberOfTaskSlots=5 \
-Drest.flamegraph.enabled=true

分析说明

为每个 Reader 设置不同的 Server id

每个用于读取 binlog 的 MySQL 数据库客户端都应该有一个唯一的 id,称为 Server id。 MySQL 服务器将使用此 id 来维护网络连接和 binlog 位置。 因此,如果不同的作业共享相同的 Server id, 则可能导致从错误的 binlog 位置读取数据。 因此,建议通过为每个 Reader 设置不同的 Server id , 假设 Source 并行度为 4,server id 配置必须:serverId(“5400-5405”),5405-5400=5 >= 4。来为 4 个 Source readers 中的每一个分配唯一的 Server id。

查看mysql链接发现
select * from information_schema.processlist where user = ‘flink-cdc’;
在这里插入图片描述Flink-cdc对mysql的影响
正常情况下,Flink-cdc是No-lock Read,主库可以继续处理事务和查询,而不会导致主库进程阻塞,对主库产生直接影响。但是,在某些情况下数据同步的过程中可能会对主库产生一些间接影响,比如:网络、IO、CPU负载以及mysql的并发连接数等资源消耗。但这些对主库的开销影响相对较小(全量同步阶段可能比较耗能,但时间相对比较短)。

断点续传

通过从checkpoint/savepoint 恢复,flink-cdc可以保证断点续传。

  • 从checkpoint/savepoint恢复,缩小同步范围,例如:从tableList(“mydb.products,mydb.orders”)或tableList(“.*”) 缩小到 tableList(“mydb.products”),应用更新生效。

  • 应用从checkpoint/savepoint恢复,扩大同步范围的部分不会生效,例如:从tableList(“mydb.products”) 到 tableList(“mydb.products,mydb.orders”)或tableList(“.*”),应用更新不生效生效。若想使动态加表生效,可以显示制定scanNewlyAddedTableEnabled(true) ,来启用扫描新添加的表功能。如没有特殊情况,建议在开发环境开启此配置。

参考:
flink-cdc
flink-cdc docs

这篇关于Flink-cdc更好的流式数据集成工具的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/997598

相关文章

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Java数字转换工具类NumberUtil的使用

《Java数字转换工具类NumberUtil的使用》NumberUtil是一个功能强大的Java工具类,用于处理数字的各种操作,包括数值运算、格式化、随机数生成和数值判断,下面就来介绍一下Number... 目录一、NumberUtil类概述二、主要功能介绍1. 数值运算2. 格式化3. 数值判断4. 随机

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

Java中基于注解的代码生成工具MapStruct映射使用详解

《Java中基于注解的代码生成工具MapStruct映射使用详解》MapStruct作为一个基于注解的代码生成工具,为我们提供了一种更加优雅、高效的解决方案,本文主要为大家介绍了它的具体使用,感兴趣... 目录介绍优缺点优点缺点核心注解及详细使用语法说明@Mapper@Mapping@Mappings@Co

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt