c++版矩阵基本操作,行列式,逆(不限矩阵大小)

2024-05-24 01:18

本文主要是介绍c++版矩阵基本操作,行列式,逆(不限矩阵大小),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原本是为了编程实现线性回归的,想想,里面太多矩阵操作,尤其是求逆。以前学数值分析时,也用到过列主元高斯消去求解线性方程组,LU分解求解线性方程组。这次,同样是用高斯消去法求矩阵行列式的值,用LU分解求解矩阵的逆,效率上程序执行起来还行,比用python跑一边速度快,结果一致,这也潜在说明python库中矩阵求逆的实现应该也是用的LU分解。至于矩阵的其他一些操作,基本上算简单,当然面的稀疏性矩阵的话,采用三元组的形式表示,运算起来会更好,但这里不考虑,可以放到数据结构数组的表示方式那一章中。下面给出c++实现的代码

#include <iostream>
#include <stdlib.h>
#include <string>
#include <math.h>
#include "loadData.h"
#include <fstream>
#include <sstream>
#include <stack>
using namespace std;
#define MAX_SIZE_OF_TRAINING_SET 100
#define MAX_NUMIT 100
#define ATTR_NUM 3
#define MAX 1000000
#define MIN -100000
#define MAX_MATRIX_COL 1000
#define MAX_MATRIX_ROW 100
class Matrix
{
public:double **mat;int col,row;
public:int loadMatrix(Matrix *matrix,dataToMatrix dtm){int i,j;Data *p;p=dtm.dataSet->next;matrix->mat=(double **)malloc(sizeof(double*)*dtm.col);for(i=0; i<dtm.col&&p!=NULL; i++){matrix->mat[i]=(double *)malloc(sizeof(double)*dtm.row);for(j=0; j<dtm.row; j++){matrix->mat[i][j]=p->attr_double[j];}p=p->next;}matrix->row=dtm.row;matrix->col=dtm.col;return 0;}int initMatrix(Matrix *matrix,int col,int row){matrix->col=col;matrix->row=row;matrix->mat=(double **)malloc(sizeof(double*)*col);int i=0,j=0;for(i=0; i<col; i++){matrix->mat[i]=(double *)malloc(sizeof(double)*row);for(j=0; j<row; j++)matrix->mat[i][j]=0;}return 0;}int initMatrix(Matrix *matrix,int col,int row,double lam){matrix->col=col;matrix->row=row;matrix->mat=(double **)malloc(sizeof(double*)*col);int i=0,j=0;for(i=0; i<col; i++){matrix->mat[i]=(double *)malloc(sizeof(double)*row);for(j=0; j<row; j++){matrix->mat[i][j]=0;if(i==j)matrix->mat[i][j]=lam;}}return 0;}int print(Matrix matrix){int i,j;for(i=0; i<matrix.col; i++){for(j=0; j<matrix.row; j++){cout<<matrix.mat[i][j]<<"  ";}cout<<endl;}}int copy(Matrix matrixA,Matrix *matrixB){int i,j;//matrixB->mat=(double **)malloc(sizeof(double*)*matrixA.col);for(i=0; i<matrixA.col; i++){//matrixB->mat[i]=(double *)malloc(sizeof(double)*matrixA.row);for(j=0; j<matrixA.row; j++){matrixB->mat[i][j]=matrixA.mat[i][j];}}matrixB->col=matrixA.col;matrixB->row=matrixA.row;return 0;}Matrix getOneRow(Matrix matrix,int iRow){Matrix oneRow;oneRow.col=matrix.col;oneRow.row=1;int i=0;initMatrix(&oneRow,oneRow.col,oneRow.row);for(i=0; i<oneRow.col; i++){oneRow.mat[i][0]=matrix.mat[i][iRow-1];}return oneRow;}Matrix getOneCol(Matrix matrix,int iCol){Matrix oneCol;oneCol.row=matrix.row;oneCol.col=1;int i=0;initMatrix(&oneCol,oneCol.col,oneCol.row);for(i=0; i<oneCol.row; i++){oneCol.mat[0][i]=matrix.mat[iCol][i];}return oneCol;}int deleteOneRow(Matrix *matrix,int iRow){int i,j;for(i=iRow; i<matrix->col; i++){//for()//由于传递来的一般是最后一列,所以只需要列数--即可,不需移动,不写了}matrix->row--;}void transposematrix(Matrix matrix,Matrix *matrixT)//矩阵形式的转置{int i=0,j=0;matrixT->col=matrix.row;matrixT->row=matrix.col;//matrixT->mat=(double **)malloc(sizeof(double *)*matrixT->col);for(i=0; i<matrixT->col; i++){//matrixT->mat[i]=(double *)malloc(sizeof(double)*matrixT->row);for(j=0; j<matrixT->row; j++){matrixT->mat[i][j]=matrix.mat[j][i];//cout<<matrixT->mat[i][j]<<"  ";}//cout<<endl;}}int addmatrix(Matrix *addMatrix,Matrix matrix1,Matrix matrix2){if(matrix1.col!=matrix2.col||matrix1.row!=matrix2.row)return -1;int i,j;addMatrix->col=matrix1.col;addMatrix->row=matrix1.row;//addMatrix->mat=(double **)malloc(sizeof(double *)*addMatrix->col);for(i=0; i<matrix1.col; i++){//addMatrix->mat[i]=(double *)malloc(sizeof(double)*addMatrix->row);for(j=0; j<matrix1.row; j++){addMatrix->mat[i][j]=matrix1.mat[i][j]+matrix2.mat[i][j];//cout<<addMatrix->mat[i][j]<<"  ";}//cout<<endl;}return 0;}int submatrix(Matrix *addMatrix,Matrix matrix1,Matrix matrix2){if(matrix1.col!=matrix2.col||matrix1.row!=matrix2.row)return -1;int i,j;addMatrix->col=matrix1.col;addMatrix->row=matrix1.row;//addMatrix->mat=(double **)malloc(sizeof(double *)*addMatrix->col);for(i=0; i<matrix1.col; i++){//addMatrix->mat[i]=(double *)malloc(sizeof(double)*addMatrix->row);for(j=0; j<matrix1.row; j++){addMatrix->mat[i][j]=matrix1.mat[i][j]-matrix2.mat[i][j];//cout<<addMatrix->mat[i][j]<<"  ";}//cout<<endl;}return 0;}int multsmatrix(Matrix *multsMatrix,Matrix matrix1,Matrix matrix2)//矩阵形式的相乘{if(matrix1.row!=matrix2.col)return -1;int i,j,k,l;multsMatrix->col=matrix1.col;multsMatrix->row=matrix2.row;//multsMatrix->mat=(double **)malloc(sizeof(double *)*(multsMatrix->col));for(i=0; i<matrix1.col; i++){// multsMatrix->mat[i]=(double *)malloc(sizeof(double)*(multsMatrix->row));for(j=0; j<matrix2.row; j++){multsMatrix->mat[i][j]=0;}}for(i=0; i<matrix1.col; i++){for(j=0; j<matrix2.row; j++){for(k=0; k<matrix1.row; k++){multsMatrix->mat[i][j]+=matrix1.mat[i][k]*matrix2.mat[k][j];}}}return 0;}//行列式double detmatrix(Matrix matrix){if(matrix.col!=matrix.row)return -1;double det=1;int i=0,j,k;double max=MIN;int swap=-1;double temp;double aij[MAX_MATRIX_COL][MAX_MATRIX_ROW];for(k=0; k<matrix.row-1; k++)//k表示第k次消元,一共需要n-1次{for(i=0; i<matrix.col; i++){if(matrix.mat[i][k]>max)//每一次消元都是比较第k列的元素,选出第k列中最大的一行{swap=i;}}//找到第k次列主元消去的最大行的下标if(swap==-1||matrix.mat[swap][k]==0)return -1;//最大主元为0for(j=0; j<matrix.row; j++){temp=matrix.mat[k][j];matrix.mat[k][j]=matrix.mat[swap][j];matrix.mat[swap][j]=temp;}//第k次消元,选出最大的一行是swap行,与第k行交换for(i=k+1; i<matrix.col; i++){aij[i][k]=matrix.mat[i][k]/matrix.mat[k][k];// 第k次消元,主元素为第k行第k列,把第k行以下的行都进行消元for(j=k; j<matrix.row; j++)//对于k行以下的每一行的每一列元素都减去主行与消元因子的乘积{matrix.mat[i][j]-=aij[i][k]*matrix.mat[k][j];}}}for(i=0; i<matrix.col; i++){det*=matrix.mat[i][i];/*for(j=0; j<matrix.row; j++){cout<<aij[i][j]<<"  ";}cout<<endl;*/}cout<<"det="<<det<<endl;return det;}//高斯消元矩阵求逆,特别注意,LU分解不能进行行列式变换int nimatrix(Matrix *niMatrix,Matrix matrix){if(matrix.col!=matrix.row)return -1;//if(detmatrix(matrix)==0)//这里调用求行列式进行了列主元消去改变了参数矩阵,如何传递不改变是一个问题//return -1;int i=0,j,k;double temp;Matrix cpMatrix;Matrix uMatrix;Matrix lMatrix;Matrix uniMatrix;Matrix lniMatrix;initMatrix(&uniMatrix,matrix.col,matrix.row);initMatrix(&lniMatrix,matrix.col,matrix.row);initMatrix(&cpMatrix,matrix.col,matrix.row);initMatrix(&uMatrix,matrix.col,matrix.row);initMatrix(&lMatrix,uMatrix.col,uMatrix.row);copy(matrix,&cpMatrix);//cout<<"cpMatrix"<<endl;//print(cpMatrix);double aij[MAX_MATRIX_COL][MAX_MATRIX_ROW];for(k=0; k<matrix.row-1; k++)//k表示第k次消元,一共需要n-1次{for(i=k+1; i<matrix.col; i++){aij[i][k]=matrix.mat[i][k]/matrix.mat[k][k];// 第k次消元,主元素为第k行第k列,把第k行以下的行都进行消元for(j=k; j<matrix.row; j++)//对于k行以下的每一行的每一列元素都减去主行与消元因子的乘积{matrix.mat[i][j]-=aij[i][k]*matrix.mat[k][j];}}}copy(matrix,&uMatrix);cout<<"uMatrix"<<endl;print(uMatrix);for(j=0; j<matrix.row; j++){for(i=j+1; i<matrix.col; i++){temp=0;for(k=0; k<j; k++){temp=lMatrix.mat[i][k]*uMatrix.mat[k][j];}lMatrix.mat[i][j]=1/uMatrix.mat[j][j]*(cpMatrix.mat[i][j]-temp);}}for(i=0; i<lMatrix.col; i++){for(j=0; j<lMatrix.row; j++){if(i==j)lMatrix.mat[i][j]=1;if(j>i)lMatrix.mat[i][j]=0;}}cout<<"lMatrix"<<endl;print(lMatrix);Matrix multsMatrix;multsMatrix.initMatrix(&multsMatrix,lMatrix.col,uMatrix.row);matrix.multsmatrix(&multsMatrix,lMatrix,uMatrix);cout<<"lu"<<endl;print(multsMatrix);//计算u逆for(j=0; j<uMatrix.row; j++){for(i=j; i>=0; i--){if(i==j)uniMatrix.mat[i][j]=1/uMatrix.mat[i][j];else{temp=0;for(k=j; k>i; k--){temp+=uMatrix.mat[i][k]*uniMatrix.mat[k][j];}uniMatrix.mat[i][j]=-1/uMatrix.mat[i][i]*temp;}}}cout<<"uniMatrix"<<endl;print(uniMatrix);//Matrix multsMatrix;//matrix.multsmatrix(&multsMatrix,uMatrix,uniMatrix);//cout<<"multsMatrix"<<endl;//print(multsMatrix);//计算l逆for(j=0; j<lMatrix.row; j++){for(i=0; i<lMatrix.col; i++){if(j==i)lniMatrix.mat[i][j]=1;else{temp=0;for(k=j; k<i; k++){temp+=(lMatrix.mat[i][k]*lniMatrix.mat[k][j]);}lniMatrix.mat[i][j]=-temp;}}}cout<<"lniMatrix"<<endl;print(lniMatrix);multsmatrix(&multsMatrix,uniMatrix,lniMatrix);cout<<"luni"<<endl;print(multsMatrix);//initMatrix(niMatrix,multsMatrix.col,multsMatrix.row);copy(multsMatrix,niMatrix);multsmatrix(&multsMatrix,cpMatrix,*niMatrix);cout<<"luluni"<<endl;print(multsMatrix);copy(cpMatrix,&matrix);}
};

这篇关于c++版矩阵基本操作,行列式,逆(不限矩阵大小)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/996960

相关文章

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

C++11委托构造函数和继承构造函数的实现

《C++11委托构造函数和继承构造函数的实现》C++引入了委托构造函数和继承构造函数这两个重要的特性,本文主要介绍了C++11委托构造函数和继承构造函数的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、委托构造函数1.1 委托构造函数的定义与作用1.2 委托构造函数的语法1.3 委托构造函

C++11作用域枚举(Scoped Enums)的实现示例

《C++11作用域枚举(ScopedEnums)的实现示例》枚举类型是一种非常实用的工具,C++11标准引入了作用域枚举,也称为强类型枚举,本文主要介绍了C++11作用域枚举(ScopedEnums... 目录一、引言二、传统枚举类型的局限性2.1 命名空间污染2.2 整型提升问题2.3 类型转换问题三、C

postgresql数据库基本操作及命令详解

《postgresql数据库基本操作及命令详解》本文介绍了PostgreSQL数据库的基础操作,包括连接、创建、查看数据库,表的增删改查、索引管理、备份恢复及退出命令,适用于数据库管理和开发实践,感兴... 目录1. 连接 PostgreSQL 数据库2. 创建数据库3. 查看当前数据库4. 查看所有数据库

C++链表的虚拟头节点实现细节及注意事项

《C++链表的虚拟头节点实现细节及注意事项》虚拟头节点是链表操作中极为实用的设计技巧,它通过在链表真实头部前添加一个特殊节点,有效简化边界条件处理,:本文主要介绍C++链表的虚拟头节点实现细节及注... 目录C++链表虚拟头节点(Dummy Head)一、虚拟头节点的本质与核心作用1. 定义2. 核心价值二

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee