Pytorch学习笔记_2_Autograd自动求导机制

2024-05-16 16:32

本文主要是介绍Pytorch学习笔记_2_Autograd自动求导机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Autograd 自动求导机制

PyTorch 中所有神经网络的核心是 autograd 包。

autograd 包为张量上的所有操作提供了自动求导。它是一个在运行时定义的框架,可以通过代码的运行来决定反向传播的过程,并且每次迭代可以是不同的。

通过一些示例来了解

Tensor 张量

torch.tensor是这个包的核心类。

  • 设置.requires_gradTrue,会追踪所有对于该张量的操作。计算完成后调用.backward(),可以自动计算所有的梯度,并自动累计到.grad属性中

事实上即使.requires_gradTrue并不意味着.grad一定不为None

  • 可以调用.detach()将该张量与计算历史记录分离,并禁止跟踪它将来的计算记录

  • 为防止跟踪历史记录(和使用内存),可以将代码块包装在with torch.no_grad():中。这在评估模型时特别有用,因为模型可能具有requires_grad = True的可训练参数,但是我们不需要梯度计算。

Function类

TensorFunction 互相连接并生成一个非循环图,它表示和存储了完整的计算历史。

每个张量都有一个.grad_fn属性,这个属性引用了一个创建了TensorFunction(除非这个张量是用户手动创建的,即,这个张量的 grad_fnNone

leaf Tensors 叶张量
Tensor中有一属性is_leaf,当它为True有两种情况:

  1. 按照惯例,requires_grad = False 的 Tensor
  2. requires_grad = True 且由用户创建的 Tensor。这意味着它们不是操作的结果且grad_fn = None
    只有leaf Tensors叶张量在反向传播时才会将本身的grad传入backward()的运算中。要想得到non-leaf Tensors非叶张量在反向传播时的grad,可以使用retain_grad()

如果需要计算导数,可以在Tensor上调用.backward():若Tensor是一个标量(即包含一个元素数据)则不需要为backward()指定任何参数, 但是如果它有更多的元素,需要指定一个gradient 参数来匹配张量的形状。

x = torch.ones(2, 2, requires_grad=True)
print(x) 
# Output:
# tensor([[1., 1.],
#        [1., 1.]], requires_grad=True)
y = x + 2
print(y)
# Output:
# tensor([[3., 3.],
#        [3., 3.]], grad_fn=<AddBackward0>)

此时,y已经被计算出来,grad_fn已经自动生成了

>>> print(y.grad_fn)
<AddBackward0 object at 0x0000013D6C2AB848>

对y进行操作

z = y * y * 3
out = z.mean()
print(z, out)
# Output:
# tensor([[27., 27.],
#        [27., 27.]], grad_fn=<MulBackward0>) # tensor(27., grad_fn=<MeanBackward0>)

.requires_grad_( ... ) 可以改变现有张量的 requires_grad属性。 如果没有指定的话,默认输入的flag是 False

Gradients 梯度

现在开始反向传播

因为out是一个标量,因此不需要为backward()指定任何参数:

out.backward()
print(x.grad)
# Output:
# tensor([[4.5000, 4.5000],
#        [4.5000, 4.5000]])

推导out.backward()

雅可比矩阵

现在让我们来看一个vector-Jacobian product的例子

x = torch.randn(3, requires_grad=True)
y = x * 2
while y.data.norm() < 1000:y = y * 2
print(y) 
# Output:
# tensor([ 293.4463,   50.6356, 1031.2501], grad_fn=<MulBackward0>)

此处y.data.norm()指y的范数,即(y_1^2 + … + y_n2)(1/2)

在这个情形中,y不再是个标量。torch.autograd无法直接计算出完整的雅可比行列,但是如果我们只想要vector-Jacobian product,只需将向量作为参数传入backward

v = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)
y.backward(v)
print(x.grad)
# Output:
# tensor([5.1200e+01, 5.1200e+02, 5.1200e-02])

如果.requires_grad=True但是你又不希望进行autograd的计算, 那么可以将变量包裹在 with torch.no_grad()中:

print(x.requires_grad) # True
print((x ** 2).requires_grad) # Truewith torch.no_grad():print((x ** 2).requires_grad) # False

这篇关于Pytorch学习笔记_2_Autograd自动求导机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/995390

相关文章

vscode保存代码时自动eslint格式化图文教程

《vscode保存代码时自动eslint格式化图文教程》:本文主要介绍vscode保存代码时自动eslint格式化的相关资料,包括打开设置文件并复制特定内容,文中通过代码介绍的非常详细,需要的朋友... 目录1、点击设置2、选择远程--->点击右上角打开设置3、会弹出settings.json文件,将以下内

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取

SpringBoot项目启动后自动加载系统配置的多种实现方式

《SpringBoot项目启动后自动加载系统配置的多种实现方式》:本文主要介绍SpringBoot项目启动后自动加载系统配置的多种实现方式,并通过代码示例讲解的非常详细,对大家的学习或工作有一定的... 目录1. 使用 CommandLineRunner实现方式:2. 使用 ApplicationRunne

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单

《Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单》:本文主要介绍Springboot的ThreadPoolTaskScheduler线... 目录ThreadPoolTaskScheduler线程池实现15分钟不操作自动取消订单概要1,创建订单后