Pytorch学习笔记_2_Autograd自动求导机制

2024-05-16 16:32

本文主要是介绍Pytorch学习笔记_2_Autograd自动求导机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Autograd 自动求导机制

PyTorch 中所有神经网络的核心是 autograd 包。

autograd 包为张量上的所有操作提供了自动求导。它是一个在运行时定义的框架,可以通过代码的运行来决定反向传播的过程,并且每次迭代可以是不同的。

通过一些示例来了解

Tensor 张量

torch.tensor是这个包的核心类。

  • 设置.requires_gradTrue,会追踪所有对于该张量的操作。计算完成后调用.backward(),可以自动计算所有的梯度,并自动累计到.grad属性中

事实上即使.requires_gradTrue并不意味着.grad一定不为None

  • 可以调用.detach()将该张量与计算历史记录分离,并禁止跟踪它将来的计算记录

  • 为防止跟踪历史记录(和使用内存),可以将代码块包装在with torch.no_grad():中。这在评估模型时特别有用,因为模型可能具有requires_grad = True的可训练参数,但是我们不需要梯度计算。

Function类

TensorFunction 互相连接并生成一个非循环图,它表示和存储了完整的计算历史。

每个张量都有一个.grad_fn属性,这个属性引用了一个创建了TensorFunction(除非这个张量是用户手动创建的,即,这个张量的 grad_fnNone

leaf Tensors 叶张量
Tensor中有一属性is_leaf,当它为True有两种情况:

  1. 按照惯例,requires_grad = False 的 Tensor
  2. requires_grad = True 且由用户创建的 Tensor。这意味着它们不是操作的结果且grad_fn = None
    只有leaf Tensors叶张量在反向传播时才会将本身的grad传入backward()的运算中。要想得到non-leaf Tensors非叶张量在反向传播时的grad,可以使用retain_grad()

如果需要计算导数,可以在Tensor上调用.backward():若Tensor是一个标量(即包含一个元素数据)则不需要为backward()指定任何参数, 但是如果它有更多的元素,需要指定一个gradient 参数来匹配张量的形状。

x = torch.ones(2, 2, requires_grad=True)
print(x) 
# Output:
# tensor([[1., 1.],
#        [1., 1.]], requires_grad=True)
y = x + 2
print(y)
# Output:
# tensor([[3., 3.],
#        [3., 3.]], grad_fn=<AddBackward0>)

此时,y已经被计算出来,grad_fn已经自动生成了

>>> print(y.grad_fn)
<AddBackward0 object at 0x0000013D6C2AB848>

对y进行操作

z = y * y * 3
out = z.mean()
print(z, out)
# Output:
# tensor([[27., 27.],
#        [27., 27.]], grad_fn=<MulBackward0>) # tensor(27., grad_fn=<MeanBackward0>)

.requires_grad_( ... ) 可以改变现有张量的 requires_grad属性。 如果没有指定的话,默认输入的flag是 False

Gradients 梯度

现在开始反向传播

因为out是一个标量,因此不需要为backward()指定任何参数:

out.backward()
print(x.grad)
# Output:
# tensor([[4.5000, 4.5000],
#        [4.5000, 4.5000]])

推导out.backward()

雅可比矩阵

现在让我们来看一个vector-Jacobian product的例子

x = torch.randn(3, requires_grad=True)
y = x * 2
while y.data.norm() < 1000:y = y * 2
print(y) 
# Output:
# tensor([ 293.4463,   50.6356, 1031.2501], grad_fn=<MulBackward0>)

此处y.data.norm()指y的范数,即(y_1^2 + … + y_n2)(1/2)

在这个情形中,y不再是个标量。torch.autograd无法直接计算出完整的雅可比行列,但是如果我们只想要vector-Jacobian product,只需将向量作为参数传入backward

v = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)
y.backward(v)
print(x.grad)
# Output:
# tensor([5.1200e+01, 5.1200e+02, 5.1200e-02])

如果.requires_grad=True但是你又不希望进行autograd的计算, 那么可以将变量包裹在 with torch.no_grad()中:

print(x.requires_grad) # True
print((x ** 2).requires_grad) # Truewith torch.no_grad():print((x ** 2).requires_grad) # False

这篇关于Pytorch学习笔记_2_Autograd自动求导机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/995390

相关文章

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

SpringKafka错误处理(重试机制与死信队列)

《SpringKafka错误处理(重试机制与死信队列)》SpringKafka提供了全面的错误处理机制,通过灵活的重试策略和死信队列处理,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、Spring Kafka错误处理基础二、配置重试机制三、死信队列实现四、特定异常的处理策略五

pytorch之torch.flatten()和torch.nn.Flatten()的用法

《pytorch之torch.flatten()和torch.nn.Flatten()的用法》:本文主要介绍pytorch之torch.flatten()和torch.nn.Flatten()的用... 目录torch.flatten()和torch.nn.Flatten()的用法下面举例说明总结torch

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Spring Boot项目中结合MyBatis实现MySQL的自动主从切换功能

《SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能》:本文主要介绍SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能,本文分步骤给大家介绍的... 目录原理解析1. mysql主从复制(Master-Slave Replication)2. 读写分离3.

微信公众号脚本-获取热搜自动新建草稿并发布文章

《微信公众号脚本-获取热搜自动新建草稿并发布文章》本来想写一个自动化发布微信公众号的小绿书的脚本,但是微信公众号官网没有小绿书的接口,那就写一个获取热搜微信普通文章的脚本吧,:本文主要介绍微信公众... 目录介绍思路前期准备环境要求获取接口token获取热搜获取热搜数据下载热搜图片给图片加上标题文字上传图片

java中反射(Reflection)机制举例详解

《java中反射(Reflection)机制举例详解》Java中的反射机制是指Java程序在运行期间可以获取到一个对象的全部信息,:本文主要介绍java中反射(Reflection)机制的相关资料... 目录一、什么是反射?二、反射的用途三、获取Class对象四、Class类型的对象使用场景1五、Class

SpringBoot中封装Cors自动配置方式

《SpringBoot中封装Cors自动配置方式》:本文主要介绍SpringBoot中封装Cors自动配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot封装Cors自动配置背景实现步骤1. 创建 GlobalCorsProperties

idea中创建新类时自动添加注释的实现

《idea中创建新类时自动添加注释的实现》在每次使用idea创建一个新类时,过了一段时间发现看不懂这个类是用来干嘛的,为了解决这个问题,我们可以设置在创建一个新类时自动添加注释,帮助我们理解这个类的用... 目录前言:详细操作:步骤一:点击上方的 文件(File),点击&nbmyHIgsp;设置(Setti

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的