Pytorch学习笔记_2_Autograd自动求导机制

2024-05-16 16:32

本文主要是介绍Pytorch学习笔记_2_Autograd自动求导机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Autograd 自动求导机制

PyTorch 中所有神经网络的核心是 autograd 包。

autograd 包为张量上的所有操作提供了自动求导。它是一个在运行时定义的框架,可以通过代码的运行来决定反向传播的过程,并且每次迭代可以是不同的。

通过一些示例来了解

Tensor 张量

torch.tensor是这个包的核心类。

  • 设置.requires_gradTrue,会追踪所有对于该张量的操作。计算完成后调用.backward(),可以自动计算所有的梯度,并自动累计到.grad属性中

事实上即使.requires_gradTrue并不意味着.grad一定不为None

  • 可以调用.detach()将该张量与计算历史记录分离,并禁止跟踪它将来的计算记录

  • 为防止跟踪历史记录(和使用内存),可以将代码块包装在with torch.no_grad():中。这在评估模型时特别有用,因为模型可能具有requires_grad = True的可训练参数,但是我们不需要梯度计算。

Function类

TensorFunction 互相连接并生成一个非循环图,它表示和存储了完整的计算历史。

每个张量都有一个.grad_fn属性,这个属性引用了一个创建了TensorFunction(除非这个张量是用户手动创建的,即,这个张量的 grad_fnNone

leaf Tensors 叶张量
Tensor中有一属性is_leaf,当它为True有两种情况:

  1. 按照惯例,requires_grad = False 的 Tensor
  2. requires_grad = True 且由用户创建的 Tensor。这意味着它们不是操作的结果且grad_fn = None
    只有leaf Tensors叶张量在反向传播时才会将本身的grad传入backward()的运算中。要想得到non-leaf Tensors非叶张量在反向传播时的grad,可以使用retain_grad()

如果需要计算导数,可以在Tensor上调用.backward():若Tensor是一个标量(即包含一个元素数据)则不需要为backward()指定任何参数, 但是如果它有更多的元素,需要指定一个gradient 参数来匹配张量的形状。

x = torch.ones(2, 2, requires_grad=True)
print(x) 
# Output:
# tensor([[1., 1.],
#        [1., 1.]], requires_grad=True)
y = x + 2
print(y)
# Output:
# tensor([[3., 3.],
#        [3., 3.]], grad_fn=<AddBackward0>)

此时,y已经被计算出来,grad_fn已经自动生成了

>>> print(y.grad_fn)
<AddBackward0 object at 0x0000013D6C2AB848>

对y进行操作

z = y * y * 3
out = z.mean()
print(z, out)
# Output:
# tensor([[27., 27.],
#        [27., 27.]], grad_fn=<MulBackward0>) # tensor(27., grad_fn=<MeanBackward0>)

.requires_grad_( ... ) 可以改变现有张量的 requires_grad属性。 如果没有指定的话,默认输入的flag是 False

Gradients 梯度

现在开始反向传播

因为out是一个标量,因此不需要为backward()指定任何参数:

out.backward()
print(x.grad)
# Output:
# tensor([[4.5000, 4.5000],
#        [4.5000, 4.5000]])

推导out.backward()

雅可比矩阵

现在让我们来看一个vector-Jacobian product的例子

x = torch.randn(3, requires_grad=True)
y = x * 2
while y.data.norm() < 1000:y = y * 2
print(y) 
# Output:
# tensor([ 293.4463,   50.6356, 1031.2501], grad_fn=<MulBackward0>)

此处y.data.norm()指y的范数,即(y_1^2 + … + y_n2)(1/2)

在这个情形中,y不再是个标量。torch.autograd无法直接计算出完整的雅可比行列,但是如果我们只想要vector-Jacobian product,只需将向量作为参数传入backward

v = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)
y.backward(v)
print(x.grad)
# Output:
# tensor([5.1200e+01, 5.1200e+02, 5.1200e-02])

如果.requires_grad=True但是你又不希望进行autograd的计算, 那么可以将变量包裹在 with torch.no_grad()中:

print(x.requires_grad) # True
print((x ** 2).requires_grad) # Truewith torch.no_grad():print((x ** 2).requires_grad) # False

这篇关于Pytorch学习笔记_2_Autograd自动求导机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/995390

相关文章

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

SpringBoot+Docker+Graylog 如何让错误自动报警

《SpringBoot+Docker+Graylog如何让错误自动报警》SpringBoot默认使用SLF4J与Logback,支持多日志级别和配置方式,可输出到控制台、文件及远程服务器,集成ELK... 目录01 Spring Boot 默认日志框架解析02 Spring Boot 日志级别详解03 Sp

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

Redis的持久化之RDB和AOF机制详解

《Redis的持久化之RDB和AOF机制详解》:本文主要介绍Redis的持久化之RDB和AOF机制,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述RDB(Redis Database)核心原理触发方式手动触发自动触发AOF(Append-Only File)核

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示