Apriori算法学习和java实现

2024-05-16 05:08

本文主要是介绍Apriori算法学习和java实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关联规则挖掘可以发现大量数据中项集之间有趣的关联或相关联系。一个典型的关联规则挖掘例子是购物篮分析,即通过发现顾客放入其购物篮中的不同商品之间的联系,分析顾客的购物习惯,从而可以帮助零售商指定营销策略,引导销售等。国外有"啤酒与尿布"的故事,国内有泡面和火腿的故事。本文以Apriori算法为例介绍关联规则挖掘并以java实现。

什么是关联规则:

对于记录的集合D和记录A,记录B,A,B属于D:  A--->B  [support(A->B)=p(AUB) ,confidence(A->B)=p(B|A) ]

关联规则的表示形式:

泡面 ------>火腿[support=0.2,confidence=0.8]

规则的支持度和置信度是两个规则兴趣度度量,它们分别反映发现规则的有用性和确定性。上式表示同时购买泡面和火腿的记录占全部记录的2%(实际应该没这么多的,不然天天吃泡面),置信度0.8表示在购买泡面的记录中,有80%的人同时购买火腿(反正我就是属于80%的。

如果挖掘的关联规则满足最小支持阈值和最小置信度阈值,则称关联规则是有趣的。

重要性质:频繁项集的所有非空子集都必须是频繁的。(一个集合如果不能通过测试,则它的所有超集也不能通过测试)


Apriori算法思想:逐层搜索的迭代方法,首先寻找1-项频繁集的集合,集合记做L1 L1用于寻找两项频繁集合L2L2用于寻找L3,如此下去,直到不能找K项频繁集合。

Apriori算法迭代的两个阶段:

 1连接步;为找L(k) ,通过将L(k-1)与自身连接产生候选K项集的集合。

2减枝步;根据项的支持度计数去掉非频繁的候选集合,确定频繁集反复迭代直到不能产生满足最小支持度的集合为止。

Apriori重要性质:频繁项集的所有非空子集都必须是频繁的在减枝中的应用就在于,对于候选集只要它不是频繁的,就可以删除掉,这样大大减少数据量。

下面直接上算法流程图:


下面举例说明:



下面直接贴代码:部分地方写的有点冗余,程序有点长的主要原因是向控制台输出挖掘的过程,这样便于理解算法的挖掘过程

但是算法思路是清晰的,基本上一个while就能搞定。


package cluster;import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;/*** Apriori算法实现 最大模式挖掘,涉及到支持度,但没有置信度计算* @author push_pop**/
public class AprioriMyself {private static final double MIN_SUPPROT = 0.2;//最小支持度private static boolean endTag = false;//循环状态static List<List<String>> record = new ArrayList<List<String>>();//数据集public static void main(String args[]){//*************读取数据集**************record = getRecord();//控制台输出记录System.out.println("以矩阵形式读取数据集record");for(int i=0;i<record.size();i++){List<String> list= new ArrayList<String>(record.get(i));for(int j=0;j<list.size();j++){System.out.print(list.get(j)+" ");}System.out.println();}//************获取候选1项集**************List<List<String>> CandidateItemset = findFirstCandidate();//控制台输出1项候选集System.out.println("第一次扫描后的1级 备选集CandidateItemset");for(int i=0;i<CandidateItemset.size();i++){List<String> list = new ArrayList<String>(CandidateItemset.get(i));for(int j=0;j<list.size();j++){System.out.print(list.get(j)+" ");}System.out.println();}//************获取频繁1项集***************List<List<String>> FrequentItemset = getSupprotedItemset(CandidateItemset);//控制台输出1项频繁集System.out.println("第一次扫描后的1级 频繁集FrequentItemset");for(int i=0;i<FrequentItemset.size();i++){List<String> list = new ArrayList<String>(FrequentItemset.get(i));for(int j=0;j<list.size();j++){System.out.print(list.get(j)+" ");}System.out.println();}//***************迭代过程**************while(endTag!=true){//**********连接操作****由k-1项频繁集      获取      候选k项集**************List<List<String>> nextCandidateItemset = getNextCandidate(FrequentItemset);System.out.println("扫描后备选集");for(int i=0;i<nextCandidateItemset.size();i++){List<String> list = new ArrayList<String>(nextCandidateItemset.get(i));for(int j=0;j<list.size();j++){System.out.print(list.get(j)+" ");}System.out.println();}//**************减枝操作***由候选k项集       获取     频繁k项集****************List<List<String>> nextFrequentItemset = getSupprotedItemset(nextCandidateItemset);System.out.println("扫描后频繁集");for(int i=0;i<nextFrequentItemset.size();i++){List<String> list = new ArrayList<String>(nextFrequentItemset.get(i));for(int j=0;j<list.size();j++){System.out.print(list.get(j)+" ");}System.out.println();}//*********如果循环结束,输出最大模式**************if(endTag == true){System.out.println("Apriori算法--->频繁集");for(int i=0;i<FrequentItemset.size();i++){List<String> list = new ArrayList<String>(FrequentItemset.get(i));for(int j=0;j<list.size();j++){System.out.print(list.get(j)+" ");}System.out.println();}}//****************下一次循环初值********************CandidateItemset = nextCandidateItemset;FrequentItemset = nextFrequentItemset;}}/*** 读取txt数据* @return*/public static List<List<String>> getRecord() {List<List<String>> record = new ArrayList<List<String>>();try {String encoding = "GBK"; // 字符编码(可解决中文乱码问题 )File file = new File("simple.txt");if (file.isFile() && file.exists()) {InputStreamReader read = new InputStreamReader(new FileInputStream(file), encoding);BufferedReader bufferedReader = new BufferedReader(read);String lineTXT = null;while ((lineTXT = bufferedReader.readLine()) != null) {//读一行文件String[] lineString = lineTXT.split("	");List<String> lineList = new ArrayList<String>();for (int i = 0; i < lineString.length; i++) {//处理矩阵中的T、F、YES、NOif (lineString[i].endsWith("T")|| lineString[i].endsWith("YES"))lineList.add(record.get(0).get(i));else if (lineString[i].endsWith("F")|| lineString[i].endsWith("NO"));// F,NO记录不保存elselineList.add(lineString[i]);}record.add(lineList);}read.close();} else {System.out.println("找不到指定的文件!");}} catch (Exception e) {System.out.println("读取文件内容操作出错");e.printStackTrace();}return record;}/*** 有当前频繁项集自连接求下一次候选集* @param FrequentItemset* @return*/private static List<List<String>> getNextCandidate(List<List<String>> FrequentItemset) {List<List<String>> nextCandidateItemset = new ArrayList<List<String>>();for (int i=0; i<FrequentItemset.size(); i++){HashSet<String> hsSet = new HashSet<String>();HashSet<String> hsSettemp = new HashSet<String>();for (int k=0; k< FrequentItemset.get(i).size(); k++)//获得频繁集第i行hsSet.add(FrequentItemset.get(i).get(k));int hsLength_before = hsSet.size();//添加前长度hsSettemp=(HashSet<String>) hsSet.clone();for(int h=i+1; h<FrequentItemset.size(); h++){//频繁集第i行与第j行(j>i)连接   每次添加且添加一个元素组成    新的频繁项集的某一行,   hsSet=(HashSet<String>) hsSettemp.clone();//!!!做连接的hasSet保持不变for(int j=0; j< FrequentItemset.get(h).size();j++)hsSet.add(FrequentItemset.get(h).get(j));int hsLength_after = hsSet.size();			if(hsLength_before+1 == hsLength_after && isSubsetOf(hsSet,record)==1 && isnotHave(hsSet,nextCandidateItemset)){//如果不相等,表示添加了1个新的元素,再判断其是否为record某一行的子集     若是则其为  候选集中的一项Iterator<String> itr = hsSet.iterator();List<String>  tempList = new ArrayList<String>();while(itr.hasNext()){String Item = (String) itr.next();tempList.add(Item);}nextCandidateItemset.add(tempList);}}}return nextCandidateItemset;}/*** 判断新添加元素形成的候选集是否在  新的候选集中* @param hsSet* @param nextCandidateItemset* @return*/private static boolean isnotHave(HashSet<String> hsSet,List<List<String>> nextCandidateItemset) {// TODO Auto-generated method stubList<String>  tempList = new ArrayList<String>();Iterator<String> itr = hsSet.iterator();while(itr.hasNext()){String Item = (String) itr.next();tempList.add(Item);}for(int i=0; i<nextCandidateItemset.size();i++)if(tempList.equals(nextCandidateItemset.get(i)))return false;return true;}/*** 判断hsSet是不是record2中的某一记录子集* @param hsSet* @param record2* @return*/private static int isSubsetOf(HashSet<String> hsSet,List<List<String>> record2) {//hsSet转换成ListList<String>  tempList = new ArrayList<String>();Iterator<String> itr = hsSet.iterator();while(itr.hasNext()){String Item = (String) itr.next();tempList.add(Item);}		for(int i=1;i<record.size();i++){List<String>  tempListRecord = new ArrayList<String>();for(int j=1;j<record.get(i).size();j++)tempListRecord.add(record.get(i).get(j));if(tempListRecord.containsAll(tempList))return 1;}return 0;}/*** 由k项候选集剪枝得到k项频繁集* @param CandidateItemset* @return*/private static List<List<String>> getSupprotedItemset(List<List<String>> CandidateItemset) {// TODO Auto-generated method stubboolean end = true;List<List<String>> supportedItemset = new ArrayList<List<String>>();int k = 0;for (int i = 0; i < CandidateItemset.size(); i++){int count = countFrequent(CandidateItemset.get(i));//统计记录数if (count >= MIN_SUPPROT * (record.size()-1)){	supportedItemset.add(CandidateItemset.get(i));end = false;}}endTag = end;//存在频繁项集则不会结束if(endTag==true)System.out.println("无满足支持度项集,结束连接");return supportedItemset;}/*** 统计record中出现list集合的个数* @param list* @return*/private static int countFrequent(List<String> list) {// TODO Auto-generated method stubint count = 0;for(int i = 1; i<record.size(); i++) {boolean notHaveThisList = false;for (int k=0; k < list.size(); k++){//判断record.get(i)是否包含listboolean thisRecordHave = false;for(int j=1; j<record.get(i).size(); j++){if(list.get(k).equals(record.get(i).get(j)))//list。get(k)在record。get(i)中能找到thisRecordHave = true;}if(!thisRecordHave){//只要有一个list元素找不到,则退出其余元素比较,进行下一个record。get(i)比较notHaveThisList = true;break;}}if(notHaveThisList == false)count++;}return count;}/*** 获得一项候选集* @return*/private static List<List<String>> findFirstCandidate() {// TODO Auto-generated method stubList<List<String>> tableList = new ArrayList<List<String>>();HashSet<String> hs  = new HashSet<String>();for (int i = 1; i<record.size(); i++){  //第一行为商品信息for(int j=1;j<record.get(i).size();j++){hs.add(record.get(i).get(j));}}	Iterator<String> itr = hs.iterator();while(itr.hasNext()){List<String>  tempList = new ArrayList<String>();String Item = (String) itr.next();tempList.add(Item);tableList.add(tempList);}return tableList;}
}





Apriori算法的缺陷也是很明显的:

1 .若数据量较大,将大量的候选集。N个频繁1项集可能产生(N-1)*N/2个候选2项集

 2   数据库需要多边扫描,频繁集每自连接一次,就要重新扫面一次数据。

关于其改进将在下一篇博客写出--不产生候选集的关联规则挖掘算法FPTree  

这篇关于Apriori算法学习和java实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/993962

相关文章

IDEA运行spring项目时,控制台未出现的解决方案

《IDEA运行spring项目时,控制台未出现的解决方案》文章总结了在使用IDEA运行代码时,控制台未出现的问题和解决方案,问题可能是由于点击图标或重启IDEA后控制台仍未显示,解决方案提供了解决方法... 目录问题分析解决方案总结问题js使用IDEA,点击运行按钮,运行结束,但控制台未出现http://

解决Spring运行时报错:Consider defining a bean of type ‘xxx.xxx.xxx.Xxx‘ in your configuration

《解决Spring运行时报错:Considerdefiningabeanoftype‘xxx.xxx.xxx.Xxx‘inyourconfiguration》该文章主要讲述了在使用S... 目录问题分析解决方案总结问题Description:Parameter 0 of constructor in x

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

JSON字符串转成java的Map对象详细步骤

《JSON字符串转成java的Map对象详细步骤》:本文主要介绍如何将JSON字符串转换为Java对象的步骤,包括定义Element类、使用Jackson库解析JSON和添加依赖,文中通过代码介绍... 目录步骤 1: 定义 Element 类步骤 2: 使用 Jackson 库解析 jsON步骤 3: 添

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内

Java中使用Java Mail实现邮件服务功能示例

《Java中使用JavaMail实现邮件服务功能示例》:本文主要介绍Java中使用JavaMail实现邮件服务功能的相关资料,文章还提供了一个发送邮件的示例代码,包括创建参数类、邮件类和执行结... 目录前言一、历史背景二编程、pom依赖三、API说明(一)Session (会话)(二)Message编程客

Java中List转Map的几种具体实现方式和特点

《Java中List转Map的几种具体实现方式和特点》:本文主要介绍几种常用的List转Map的方式,包括使用for循环遍历、Java8StreamAPI、ApacheCommonsCollect... 目录前言1、使用for循环遍历:2、Java8 Stream API:3、Apache Commons

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫