YOLOv9训练自己的数据集:最新最详细教程

2024-05-16 05:04

本文主要是介绍YOLOv9训练自己的数据集:最新最详细教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、代码及论文链接:

代码链接:https://github.com/WongKinYiu/yolov9/tree/main

论文链接:https://arxiv.org/abs/2402.13616

二、使用步骤

1.1 虚拟环境配置

创建一个虚拟环境用于单独对yolov9的环境进行配置:

conda create -n yolov9 python=3.8

配置虚拟环境的工程依赖

# 激活你的虚拟环境
activate yolov9
# cd到你的yolov9-main
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
# 这里我提前注释掉了torch的安装部分,需要自行安装gpu版的torch、torchvision

此时我们安装的只是基础的CPU状态,如果需要使用GPU训练,需要在pytorch中找到适合自己的cuda版本的torch口令然后下载。(我用的原博主的,因为我自己选的有问题hhh)

conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia

找到适合自己的cuda版本方法:①打开NVIDIA控制面板:

一般按照上面操作,环境就配好了。可以在train.py里面调试一下使用torch.cuda.is_available()来判断是否GPU成功可用。

1.2 数据集准备

数据集:东北大学缺陷检测数据集(6类别缺陷)

数据集百度网盘链接:链接:https://pan.baidu.com/s/1QktBnMcDdsQaT6JQXBjNPA 
提取码:cslw                 数据集有效期:一年

新建datasets文件,包含images和labels。

新建my_data.yaml,内容如下:path改为自己的datasets位置

path: D:\documents\yolov9-main\datasets  # dataset root dir
train: images/train  # train images (relative to 'path') 128 images
val: images/val # val images (relative to 'path') 128 images
test: images/test # test images (optional)nc: 6# Classes
names:  0: xxx1: xxx

 

 

下载预训练文件

https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c-converted.pt

2.1 填写训练脚本

左上角点击文件,点击设置,设置环境为新建的环境yolov9

        打开YOLOv9工程下的train_dual.py脚本文件,并按图中依次填入以下路径:

2.2运行即可。

3.训练
       我这里租用的是云服务器,因此要配置一些环境(如果是拿自己电脑训练的话,就可以跳过环境配置)。

其实也很简单:pip install -r requirements.txt     apt-get update   apt-get install libglib2.0-dev

之后开始训练:

给大家看看前十次的训练结果

咋们看看结果

PR曲线,可以看出基本是吊打了之前的yolo

4.检测一下试试效果
先修改一下detect.py中的参数

1)这里需要将runs/train/exp5/weights中的best.pt复制到与detect.py同级目录下

2)在detect.py同级目录新建testfile文件夹,里面放你要检测的图像

3)修改coco128为my_data.yaml

好运行一下:python detect.py

这篇关于YOLOv9训练自己的数据集:最新最详细教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/993949

相关文章

python中各种常见文件的读写操作与类型转换详细指南

《python中各种常见文件的读写操作与类型转换详细指南》这篇文章主要为大家详细介绍了python中各种常见文件(txt,xls,csv,sql,二进制文件)的读写操作与类型转换,感兴趣的小伙伴可以跟... 目录1.文件txt读写标准用法1.1写入文件1.2读取文件2. 二进制文件读取3. 大文件读取3.1

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

如何在Mac上安装并配置JDK环境变量详细步骤

《如何在Mac上安装并配置JDK环境变量详细步骤》:本文主要介绍如何在Mac上安装并配置JDK环境变量详细步骤,包括下载JDK、安装JDK、配置环境变量、验证JDK配置以及可选地设置PowerSh... 目录步骤 1:下载JDK步骤 2:安装JDK步骤 3:配置环境变量1. 编辑~/.zshrc(对于zsh

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

Python虚拟环境终极(含PyCharm的使用教程)

《Python虚拟环境终极(含PyCharm的使用教程)》:本文主要介绍Python虚拟环境终极(含PyCharm的使用教程),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录一、为什么需要虚拟环境?二、虚拟环境创建方式对比三、命令行创建虚拟环境(venv)3.1 基础命令3

使用Node.js制作图片上传服务的详细教程

《使用Node.js制作图片上传服务的详细教程》在现代Web应用开发中,图片上传是一项常见且重要的功能,借助Node.js强大的生态系统,我们可以轻松搭建高效的图片上传服务,本文将深入探讨如何使用No... 目录准备工作搭建 Express 服务器配置 multer 进行图片上传处理图片上传请求完整代码示例

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入