美国 AI 顶级院校博士机器学习课程是什么样的?

2024-05-15 13:58

本文主要是介绍美国 AI 顶级院校博士机器学习课程是什么样的?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

640?wx_fmt=png

训练营采用美国顶级院校的教学体系,帮助你在 4-6 个月内找到一份人工智能、机器学习、深度学习、数据科学家、算法工程师等AI相关岗位,或协助你申请美国、欧洲相关院校 AI 方向的学位。

由于 AI 领域的飞速发展,课程也会与时俱进。由 11 位美国 AI 博士组成的教研团队会确保在 2 周之内新出的重要技术,第一时间可以让你学会并熟练应用。

让我们来了解一下这个课程深度对标卡耐基梅隆大学(CMU)AI 硕士、博士阶段内容的《机器学习高阶训练营》吧:

640?wx_fmt=jpeg

640?wx_fmt=gif

01

课程大纲

美国 AI 硕士、博士阶段课程

第一阶段 机器学习基础与凸优化

【核心知识点】

. KNN算法,Weighted KNN算法

. Approximated KNN算法

. KD树,近似KD树

. Locality Sensitivity Hashing

. 线性回归模型

. Bias-Variance Trade-off

. 正则的使用:L1, L2, L-inifity Norm

. LASSO, Coordinate Descent,ElasticNet

. 逻辑回归与最大似然

. 随机梯度下降法与小批量梯度下降法

. 多元逻辑回归模型

. 凸集,凸函数

. 凸函数与判定凸函数

. Linear/Quadratic/Integer Programming

. 对偶理论,Duality Gap,KKT条件

. Projected Gradient Descent

. 迭代式算法的收敛分析

【部分案例讲解】

. 基于QP的股票投资组合策略设计

. 基于LP的短文本相似度计算

. 基于KNN的图像识别

第二阶段 SVM与集成模型

【核心知识点】

. Max-Margin的方法核心思想

. 线性SVM的一步步构建

. Slack Variable以及条件的松弛

. SVM的Dual Formulation

. Kernelized SVM

. 不同核函数的详解以及使用. 核函数设计以及Mercer's Theorem

. Kernelized Linear Regression

. Kernelized PCA, Kernelized K-means

. 集成模型的优势

. Bagging, Boosting, Stacking

. 决策树以及信息论回顾

. 随机森林,完全随机森林

. 基于残差的提升树训练思想

. GBDT与XGBoost

. 集成不同类型的模型

. VC理论

【部分案例讲解】

. 基于XGBoost的金融风控模型

. 基于PCA和Kernel SVM的人脸识别. 基于Kernal PCA和Linear SVM的人脸识别

第三阶段 无监督学习与序列模型

【核心知识点】

. K-means算法, K-means++

. EM算法以及收敛性

. 高斯混合模型以及K-means

. 层次聚类算法

. Spectral Clustering

. DCSCAN

. 隐变量与隐变量模型

. HMM的应用以及参数

. 条件独立、D-separation

. 基于Viterbi的Decoding

. Forward/Backward算法

. 基于EM算法的参数估计

. 有向图与无向图模型区别

. Log-Linear Model

. Feature Function的设计

. Linear CRF以及参数估计

【部分案例讲解】

. 基于HMM和GMM的语音识别

. 基于聚类分析的用户群体分析

. 基于CRF的命名实体识别

第四阶段 深度学习

【核心知识点】

. 神经网络与激活函数

. BP算法

. 卷积层、Pooling层、全连接层

. 卷积神经网络

. 常用的CNN结构

. Dropout与Batch Normalization

. SGD、Adam、Adagrad算法

. RNN与梯度消失

. LSTM与GRU

. Seq2Seq模型与注意力机制

. Word2Vec, Elmo, Bert, XLNet

. 深度学习中的调参技术

. 深度学习与图嵌入(Graph Embedding)

. Translating Embedding (TransE)

. Node2Vec

. Graph Convolutional Network

. Structured Deep Network Embedding

. Dynamic Graph Embedding

【部分案例讲解】

. 基于Seq2Seq和注意力机制的机器翻译

. 基于TransE和GCN的知识图谱推理

. 基于CNN的人脸关键点检测

第五阶段 推荐系统与在线学习

【核心知识点】

. 基于内容的推荐算法

. 基于协同过滤的推荐算法

. 矩阵分解

. 基于内容的Gradient Tree

. 基于深度学习的推荐算法

. 冷启动问题的处理

. Exploration vs Exploitation

. Multi-armed Bandit

. UCB1 algorithm,EXP3 algorithm

. Adversarial Bandit model

. Contexulalized Bandit

. LinUCB

【部分案例讲解】

. 使用Gradient Boosting Tree做基于 interaction 与 content的广告推荐

. 使用深度神经网络做基于interaction 与 content的推荐

. LinUCB做新闻推荐, 最大化rewards

第六阶段 贝叶斯模型

【核心知识点】

. 主题模型(LDA) 以及生成过程

. Dirichlet Distribution, Multinomial Distribution

. 蒙特卡洛与MCMC

. Metropolis Hasting与Gibbs Sampling

. 使用Collapsed Gibbs Sampler求解LDA

. Mean-field variational Inference

. 使用VI求解LDA

. Stochastic Optimization与Bayesian Inference

. 利用SLGD和SVI求解LDA

. 基于分布式计算的贝叶斯模型求解

. 随机过程与无参模型(non-parametric)

. Chinese Retarant Process

. Stick Breaking Process

. Stochastic Block Model与MMSB

. 基于SGLD与SVI的MMSB求解

. Bayesian Deep Learning模型. Deep Generative Model

【部分案例讲解】

. 基于Bayesian LSTM的文本分析

. 使用无参主题模型做文本分类

. 基于贝叶斯模型实现小数量的图像识别

第七阶段 增强学习与其他前沿主题

【核心知识点】

. Policy Learning

. Deep RL

. Variational Autoencoder(VAE)与求解

. 隐变量的Disentangling

. 图像的生成以及Disentangling

. 文本的生成以及Disentangling

. Generative Adversial Network(GAN)

. CycleGan

. 深度学习的可解释性

. Deconvolution与图像特征的解释

. Layer-wise Propagation

. Adversial Machine Learning

. Purturbation Analysis

. Fair Learning

【部分案例讲解】

. 基于GAN的图像生成

. 基于VAE的文本Style Transfer

. 可视化机器翻译系统


640?wx_fmt=gif

02

部分项目

大量企业级项目实战

课程设计紧密围绕学术界最新进展以及工业界的需求,涵盖了所有核心知识点,并且结合了大量实战项目,培养学员的动手能力,解决问题能来以及对知识的深入理解。

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=gif

03

授课讲解

直播授课,现场推导演示

区别于劣质的 PPT 讲解,导师全程现场推导,让你在学习中有清晰的思路,深刻的理解算法模型背后推导的每个细节。更重要的是可以清晰地看到各种模型之间的关系!帮助你打通六脉!

640?wx_fmt=jpeg

▲源自:CRF与Log-Linear模型讲解

640?wx_fmt=jpeg

▲源自:CRF与Log-Linear模型讲解

640?wx_fmt=jpeg

▲源自:Convex Optimization 讲解

640?wx_fmt=jpeg

▲源自:Convergence Analysis 讲解

不管你在学习过程中遇到多少阻碍,你都可以通过以下 4 种方式解决:

1、直接在线问导师;

2、记录到共享文档中,每日固定时间的直播答疑;

3、学习社群中全职助教,24h 随时提问答疑

4、共同的问题在 Review Session 里面做讲解

注:每次答疑,班主任都会进行记录,以便学员实时查阅。

640?wx_fmt=png

640?wx_fmt=gif

04

课程适合谁?

·对机器学习算法有基础了解,具备编程能力;

·对数据结构与算法比较熟悉;

·想申请国外名校AI相关专业的硕士/博士;

·已从事 AI 领域工作,想要升职加薪;

·想转型成为一线 AI 工程师 (已具备基础)。

640?wx_fmt=gif

05

课程特色

  • 内容上包含了作为 AI 顶级工程师必备的核心技术体系;

  • 内容上包含了大量最前沿的技术;

  • 具备一定的挑战性和深度,区别于市面上的其他同类的课程;

  • 理论与实战的结合,所有的理论会本质层面讲起,通俗易懂,即便是BERT, Bayesian NN 也会让你理解并且熟练应用;

  • 包含具有挑战性的课程项目作业和理论作业,这些会帮助你更深入地理解学过的知识点,每一个重要的知识点会配备实战讲解以及核心代码 review;

  • 硅谷 AI 博士教研讲师团队,均在机器学习、深度学习领域有很深的研究和工作经验

640?wx_fmt=gif

06

课程安排

高强度学习,魔鬼式训练

采用直播的授课方式,一周 4-5 次的直播教学, 包括 2 次的 main lectures, 1-2 次的 discussion session (讲解某一个实战、必备基础、案例或者技术上的延伸), 1 次的 paper reading session (每周会 assign 一篇必备论文,并且直播解读)。教学模式上也参考了美国顶级院校的教学体系。以下为其中一周的课程安排,供参考。 

640?wx_fmt=jpeg

报名方式

请扫描下方二维码咨询课程

???   

640?wx_fmt=jpeg

  ▲  
长按识别上方二维码,咨询课程 
640?wx_fmt=gif

07

你的必备挑战

1.编写一些技术类文章

通过在知乎上发表相关技术文章进行自我成果检验,同时也是一种思想碰撞的方式,导师会对发表的每一篇文章写一个详细的评语。万一不小心成为一个大 V 了呢?

虽然写文章的过程万分痛苦,学习群里半夜哀嚎遍野,但看一看抓着头发写出来的文章结果还是非常喜人的!看着自己收获的点赞数,大家都默默地感谢起导师们的无情!

这种满满的成就感,让大家一篇接一篇写了下去!

640?wx_fmt=png

个个都立刻变身成了知乎大牛~

2.Project 项目

除了文章,算法工程师立命的根本--项目代码,导师更是不会放过的。每次在 Gitlab 上布置的作业,导师们都会带领助教团队会予以详细的批改和反馈。并逼着你不断的优化!

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=gif

08

课程导师

2 位硅谷 AI 博士,学术、工业界大牛

看了这么多,是不是非常崇拜设计出如此地狱式学习计划的大牛,那就来正式认识一下这位训练营中人人听了都闻风丧胆,但又让人崇拜+喜爱+欲罢不能的训练营魔头导师们:

640?wx_fmt=png

在被大魔头们折磨了多个日日夜夜后,大家不但没有放弃学习,而且很快乐地学习着。来听听大家的心声吧:

由于内容的专业性以及深度,在过去我们的训练营中吸引了大量全球顶级名府的学员,这里不乏来自 CMU, Columbia, USC, UCSD 等美国顶级名校和清北上交等国内名校学员,还有知名企业的一线工程师。

我们的魔鬼训练营体系已经在众多课程中得到了认可,帮助数百名学员达到技能提升并成功拿到高薪 offer。

640?wx_fmt=gif

9

报名须知

1、本课程为收费教学。

2、每期仅招收50人,将择优录取。

3、品质保障,正式开课后 7 天内,无条件全额退款。

报名方式

请扫描下方二维码咨询课程

???   

640?wx_fmt=jpeg

  ▲  
长按识别上方二维码,咨询课程 

这篇关于美国 AI 顶级院校博士机器学习课程是什么样的?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/992004

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss