深入浅出Java中的数据结构:LinkedHashMap详解

2024-05-15 08:44

本文主要是介绍深入浅出Java中的数据结构:LinkedHashMap详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

哈喽,各位小伙伴们,你们好呀,我是喵手。运营社区:C站/掘金/腾讯云;欢迎大家常来逛逛

  今天我要给大家分享一些自己日常学习到的一些知识点,并以文字的形式跟大家一起交流,互相学习,一个人虽可以走的更快,但一群人可以走的更远。

  我是一名后端开发爱好者,工作日常接触到最多的就是Java语言啦,所以我都尽量抽业余时间把自己所学到所会的,通过文章的形式进行输出,希望以这种方式帮助到更多的初学者或者想入门的小伙伴们,同时也能对自己的技术进行沉淀,加以复盘,查缺补漏。

小伙伴们在批阅的过程中,如果觉得文章不错,欢迎点赞、收藏、关注哦。三连即是对作者我写作道路上最好的鼓励与支持!

前言

  在Java编程中,我们经常需要使用Map这个数据结构来存储键值对,而LinkedHashMap是Map的一个实现类,它在HashMap的基础上维护了一个双向链表,并且按照插入顺序或者访问顺序来迭代元素。LinkedHashMap既保证了HashMap的快速访问性能,又提供了顺序访问的能力,因此在某些场景下非常有用。

  本文将从源代码解析、应用场景案例、优缺点分析等多个方面对LinkedHashMap进行详细介绍,希望能帮助读者更好地理解LinkedHashMap的实现原理和使用方法。

摘要

  本文主要介绍了Java中的LinkedHashMap这个数据结构,并对其源代码进行了分析和解读。通过对LinkedHashMap的应用场景案例和优缺点分析,读者可以更好地理解LinkedHashMap的使用方法和使用场景。

LinkedHashMap

简介

  LinkedHashMap是Java中Map接口的一个实现类,它继承了HashMap,并且在HashMap的基础上维护了一个双向链表。LinkedHashMap的特点是可以按照插入顺序或者访问顺序来迭代元素。按照插入顺序迭代时,元素的顺序和插入的顺序相同;按照访问顺序迭代时,访问过的元素会被移动到链表的尾部,最近访问的元素会排在链表的前面。

LinkedHashMap的构造方法有以下几种:

public LinkedHashMap() {super();
}public LinkedHashMap(int initialCapacity) {super(initialCapacity);
}public LinkedHashMap(int initialCapacity, float loadFactor) {super(initialCapacity, loadFactor);
}public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) {super(initialCapacity, loadFactor);this.accessOrder = accessOrder;
}

  其中,accessOrder参数表示是否按照访问顺序来迭代元素。如果accessOrder为true,表示按照访问顺序来迭代元素;如果accessOrder为false,表示按照插入顺序来迭代元素。如果不指定accessOrder参数,则默认按照插入顺序来迭代元素。

  LinkedHashMap是线程不安全的,如果需要多线程并发访问,需要使用ConcurrentHashMap。

源代码解析

  LinkedHashMap的源代码比HashMap的源代码要复杂一些,因为它需要维护一个双向链表。下面我们将对LinkedHashMap的源代码进行分析,帮助读者更好地理解它的实现原理。

数据结构

  LinkedHashMap维护了一个双向链表,链表节点类型为Entry,继承了HashMap的Node类。Entry类的定义如下:

static class Entry<K,V> extends HashMap.Node<K,V> {Entry<K,V> before, after;Entry(int hash, K key, V value, Node<K,V> next) {super(hash, key, value, next);}
}

  其中,before和after分别表示当前节点的前驱节点和后继节点。

实现原理

  在LinkedHashMap中,每个Entry节点都维护了一个before和after指针,表示该节点的前驱节点和后继节点。因此,LinkedHashMap需要重写HashMap的put和remove方法,以保证在插入和删除元素时能够正确地更新链表。

put方法

  当调用put方法插入一个新元素时,LinkedHashMap会调用父类HashMap的putVal方法来实现插入。在putVal方法中,如果插入的元素已经存在,则会更新该元素的value值,并返回旧的value值;如果插入的元素不存在,则会创建一个新节点,并将该节点插入到hash桶中。

public V put(K key, V value) {return putVal(hash(key), key, value, false, true);
}final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {Node<K,V>[] tab; Node<K,V> p; int n, i;if ((tab = table) == null || (n = tab.length) == 0)n = (tab = resize()).length;if ((p = tab[i = (n - 1) & hash]) == null)tab[i] = newNode(hash, key, value, null);else {Node<K,V> e; K k;if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))e = p;else if (p instanceof TreeNode)e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);else {for (int binCount = 0; ; ++binCount) {if ((e = p.next) == null) {p.next = newNode(hash, key, value, null);if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1sttreeifyBin(tab, hash);break;}if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))break;p = e;}}if (e != null) { // existing mapping for keyV oldValue = e.value;if (!onlyIfAbsent || oldValue == null)e.value = value;afterNodeAccess(e); // 更新该节点在链表中的位置return oldValue;}}++modCount;if (++size > threshold)resize();afterNodeInsertion(evict); // 更新链表return null;
}

  在调用父类HashMap的put方法插入新元素之后,LinkedHashMap会在afterNodeInsertion方法中更新链表。具体更新流程如下:

void afterNodeInsertion(boolean evict) { // possibly remove eldestEntry<K,V> eldest;if (evict && (eldest = eldest()) != null && removeEldestEntry(eldest)) {K key = eldest.key;removeNode(hash(key), key, null, false, true);}else if (size > capacity && removeEldestEntry(head)) {K key = head.key;removeNode(hash(key), key, null, false, true);}
}

  其中,removeEldestEntry方法用于判断是否需要删除最老的节点,该方法默认返回false,如果需要删除最老的节点,需要在继承LinkedHashMap的类中重写该方法。

在这里插入图片描述

protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {return false;
}

  如果需要删除最老的节点,则会调用removeNode方法来删除该节点。

final void removeNode(int hash, Object key, Object value,boolean matchValue, boolean movable) {Node<K,V>[] tab; Node<K,V> p; int n, index;if ((tab = table) != null && (n = tab.length) > 0 &&(p = tab[index = (n - 1) & hash]) != null) {Node<K,V> node = null, e; K k; V v;if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))node = p;else if ((e = p.next) != null) {if (p instanceof TreeNode)node = ((TreeNode<K,V>)p).getTreeNode(hash, key);else {do {if (e.hash == hash &&((k = e.key) == key ||(key != null && key.equals(k)))) {node = e;break;}p = e;} while ((e = e.next) != null);}}if (node != null && (!matchValue || (v = node.value) == value ||(value != null && value.equals(v)))) {if (node instanceof TreeNode)((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);else if (node == p)tab[index] = node.next;elsep.next = node.next;--size;afterNodeRemoval(node); // 更新链表return;}}
}

  在LinkedHashMap中,每个节点都维护了一个before和after指针,表示该节点的前驱节点和后继节点。因此,在插入和删除元素时,需要更新链表以保证顺序的正确性。

  在插入元素时,插入操作会调用父类HashMap的putVal方法,插入新节点;接着,在afterNodeInsertion方法中,会调用方法addEntry方法将新节点插入到链表的尾部。具体实现如下:

void afterNodeInsertion(boolean evict) { // possibly remove eldestEntry<K,V> eldest;if (evict && (eldest = eldest()) != null && removeEldestEntry(eldest)) {K key = eldest.key;removeNode(hash(key), key, null, false, true);}else if (size > capacity && removeEldestEntry(head)) {K key = head.key;removeNode(hash(key), key, null, false, true);}else {Entry<K,V> tail = tail();if (tail != null)linkNodeLast(tail, newNode);else// 链表为空,把新节点作为头节点head = newNode;}
}

  其中,如果evict为true且需要删除最老的节点,则会调用removeNode方法删除最老的节点;如果链表长度超出了capacity则会调用removeEldestEntry方法删除头部节点(即最老的节点)。如果不需要删除节点,则会调用linkNodeLast方法将新节点插入到链表的尾部。

  在删除节点时,调用removeNode方法删除节点后,会调用afterNodeRemoval方法来更新链表。如果需要删除的节点是头节点,则会将头节点更新为头节点的后继节点;否则,需要更新要删除节点的前驱节点的after指针和后继节点的before指针。具体实现如下:

void afterNodeRemoval(Node<K,V> e) { // unlinkEntry<K,V> p = (Entry<K,V>)e, b = p.before, a = p.after;p.before = p.after = null;if (b == null)head = a;elseb.after = a;if (a == null)tail = b;elsea.before = b;
}

在这里插入图片描述

迭代器

  LinkedHashMap提供了按照插入顺序和访问顺序来迭代元素的能力。在按照插入顺序迭代时,只需要按照节点的插入顺序依次迭代即可;在按照访问顺序迭代时,需要按照节点的访问顺序来迭代,即最近访问的节点排在链表的前面。因此,LinkedHashMap需要重写HashMap的迭代器,实现按照访问顺序迭代元素的功能。

  在LinkedHashMap中,Entry节点继承了HashMap的Node类,并且新增了before和after指针,因此LinkedHashMap需要重写HashMap的迭代器,实现按照访问顺序来迭代元素。

  在创建迭代器时,需要判断是否按照访问顺序来迭代元素。如果按照访问顺序来迭代元素,则需要按照节点的访问顺序来排序,最近访问的节点排在链表的前面;否则,按照节点的插入顺序依次迭代。

具体实现如下:

Iterator<Entry<K,V>> newIterator() {return new LinkedHashIterator();
}final class LinkedHashIterator extends HashMapIterator<Entry<K,V>> {public Entry<K,V> next() {return nextNode();}public void remove() {removeNode(lastReturned);}
}final class EntryIterator extends LinkedHashIterator {public Entry<K,V> next() {return nextNode();}
}final class KeyIterator extends LinkedHashIterator {public K next() {return nextNode().getKey();}
}final class ValueIterator extends LinkedHashIterator {public V next() {return nextNode().value;}
}final class LinkedKeyIterator extends KeyIterator {public K next() {return nextEntry().getKey();}
}final class LinkedValueIterator extends ValueIterator {public V next() {return nextEntry().value;}
}Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {Entry<K,V> p = new Entry<K,V>(hash, key, value, e);linkNodeLast(p);return p;
}void linkNodeLast(Entry<K,V> p) {Entry<K,V> last = tail;tail = p;if (last == null)head = p;else {p.before = last;last.after = p;}
}

  其中,newIterator方法用于创建迭代器对象,返回一个LinkedHashIterator对象;LinkedHashIterator继承了HashMap的迭代器类HashMapIterator,并且重写了next方法和remove方法,以实现按照访问顺序迭代元素的功能。

在这里插入图片描述

  在nextNode方法中,如果按照访问顺序来迭代元素,则会将最近访问的节点移动到链表的尾部(即末尾),以实现最近访问的节点排在链表的前面。

final Node<K,V> nextNode() {Entry<K,V> e = next;if (modCount != expectedModCount)throw new ConcurrentModificationException();if (e == null)throw new NoSuchElementException();// 按照访问顺序来迭代元素if (accessOrder)lastReturned = e;// 按照插入顺序迭代元素elselastReturned = next;next = e.after;return lastReturned;
}

  在removeNode方法中,如果需要删除的节点是最近访问的节点,则需要将指针last指向要删除节点的前驱节点,以便在下一次迭代时正确地返回要迭代的元素。

final void removeNode(Node<K,V> p) {Entry<K,V> e = (Entry<K,V>)p, b = e.before, a = e.after;if (b == null)head = a;elseb.after = a;if (a == null)tail = b;elsea.before = b;if (e == lastReturned)next = a;elseexpectedModCount++;modCount++;size--;e.value = null;
}

应用场景案例

  LinkedHashMap可以用于需要有序存储和访问的场景,比如LRU缓存、打印日志、调试信息存储等。下面以LRU缓存为例,介绍LinkedHashMap的应用。

  在实现LRU缓存时,可以使用LinkedHashMap来存储数据,最近访问的元素会被移动到链表的尾部,最老的元素位于链表的头部。每当缓存中的元素数量超过了一定的阈值时,就可以通过removeEldestEntry方法删除最老的元素,以保证缓存中的元素不超过阈值。

public class LRUCache<K, V> extends LinkedHashMap<K,V> {private int capacity;private static final float LOAD_FACTOR = 0.75f;public LRUCache(int capacity) {super(capacity, LOAD_FACTOR, true);this.capacity = capacity;}protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {return size() > capacity;}
}

  在LRUCache的实现中,继承了LinkedHashMap,并重写了构造方法和removeEldestEntry方法。构造方法使用了accessOrder参数来指定按照访问顺序迭代元素,以便将最近访问的元素移动到链表的尾部。removeEldestEntry方法用于判断是否需要删除最老的元素,如果缓存中的元素数量超过了阈值,则需要删除最老的元素。

优缺点分析

LinkedHashMap相对于HashMap的优点在于:

  1. 可以按照插入顺序和访问顺序迭代元素。
  2. 通过维护一个双向链表,可以实现LRU缓存等有序存储和访问的场景。
  3. 在保证HashMap的快速访问性能的同时,提供了顺序访问的能力。

LinkedHashMap相对于HashMap的缺点在于:

  1. 需要维护一个双向链表,因此占用内存更多。
  2. 删除节点时需要更新前驱节点的after指针和后继节点的before指针,比HashMap多了一些操作,因此性能可能略差一些。
  3. LinkedHashMap是线程不安全的,如果需要多线程并发访问,需要使用ConcurrentHashMap。

测试用例

测试代码演示

  下面是一个使用LinkedHashMap的测试用例:

以下是一个简单的测试用例,演示如何使用 LinkedHashMap 来存储键值对,并打印出 LinkedHashMap 的值:

package com.example.javase.collection;import java.util.LinkedHashMap;
import java.util.Map;/*** @author ms* @date 2023/10/25 15:50*/
public class LinkedHashMapTest {public static void main(String[] args) {// 创建一个 LinkedHashMap 对象Map<String, String> linkedHashMap = new LinkedHashMap<>();// 添加键值对到 LinkedHashMaplinkedHashMap.put("key1", "value1");linkedHashMap.put("key2", "value2");linkedHashMap.put("key3", "value3");// 打印 LinkedHashMap 的键值对for (Map.Entry<String, String> entry : linkedHashMap.entrySet()) {System.out.println(entry.getKey() + " : " + entry.getValue());}}
}

预计输出结果:

key1 : value1
key2 : value2
key3 : value3

测试结果

  根据如上测试用例,本地测试结果如下,仅供参考,你们也可以自行修改测试用例或者添加更多的测试数据或测试方法,进行熟练学习以此加深理解。

在这里插入图片描述

测试代码分析

  根据如上测试用例,在此我给大家进行深入详细的解读一下测试代码,以便于更多的同学能够理解并加深印象。

  首先,导入了java.util.LinkedHashMapjava.util.Map 包。在 main 方法中创建了一个 LinkedHashMap 对象。

  然后,通过 put 方法向 LinkedHashMap 中添加了三组键值对。

  最后,通过 for-each 循环遍历 LinkedHashMap 中的键值对,并打印出来。

  LinkedHashMap 是基于哈希表和双向链表的数据结构,它可以保持插入顺序,因此可以按照插入顺序遍历。在插入新元素时,它将元素插入到链表的末尾,保持了元素的插入顺序。

  这个测试用例主要演示了 LinkedHashMap的基本用法,包括如何创建一个 LinkedHashMap 对象、如何添加元素、如何遍历元素等。

小结

  LinkedHashMap是Java中的一个数据结构,它在HashMap的基础上维护了一个双向链表,可以按照插入顺序或者访问顺序来迭代元素。LinkedHashMap在保证了HashMap的快速访问性能的同时,提供了顺序访问的能力,因此可以应用在需要有序存储和访问的场景,比如LRU缓存、打印日志、调试信息存储等。

  在使用LinkedHashMap时,需要注意它占用的内存较HashMap更多,删除节点时需要更新前驱节点的after指针和后继节点的before指针,性能可能略差一些。此外,LinkedHashMap不是线程安全的,如果需要多线程并发访问,需要使用ConcurrentHashMap。

总结

  本文详细介绍了Java中的LinkedHashMap这个数据结构,包括其构造方法、源代码解析、应用场景案例和优缺点分析等多个方面。LinkedHashMap继承了HashMap并在其基础上维护了一个双向链表,可以按照插入顺序或者访问顺序来迭代元素。LinkedHashMap可以应用在需要有序存储和访问的场景,比如LRU缓存、打印日志、调试信息存储等。

  需要注意的是,LinkedHashMap占用的内存较HashMap更多,删除节点时需要更新前驱节点的after指针和后继节点的before指针,性能可能略差一些。此外,LinkedHashMap不是线程安全的,如果需要多线程并发访问,需要使用ConcurrentHashMap。

… …

文末

好啦,以上就是我这期的全部内容,如果有任何疑问,欢迎下方留言哦,咱们下期见。

… …

学习不分先后,知识不分多少;事无巨细,当以虚心求教;三人行,必有我师焉!!!

wished for you successed !!!


⭐️若喜欢我,就请关注我叭。

⭐️若对您有用,就请点赞叭。

⭐️若有疑问,就请评论留言告诉我叭。

这篇关于深入浅出Java中的数据结构:LinkedHashMap详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/991352

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

Spring Security--Architecture Overview

1 核心组件 这一节主要介绍一些在Spring Security中常见且核心的Java类,它们之间的依赖,构建起了整个框架。想要理解整个架构,最起码得对这些类眼熟。 1.1 SecurityContextHolder SecurityContextHolder用于存储安全上下文(security context)的信息。当前操作的用户是谁,该用户是否已经被认证,他拥有哪些角色权限…这些都被保

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听