行人检测(总结)

2024-05-15 07:32
文章标签 总结 检测 行人

本文主要是介绍行人检测(总结),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

看了将近半年的行人检测的资料,最近开题了,我也趁着这个机会把脑袋里的东西总结一下:

先说下常用的数据库:最早的是MIT,这个库比较简单,行人图片背景简单,只有正面和背面。在2005年以前流行,2005年后随着HOG的提出,MIT库上的准确率已经达到100%,所以INRIA成为标准数据库中的大家通用的数据库。这个库背景复杂,人的姿势也比较多,还有些光照等环境的影响。另外一个关于车辆内行人的图像库是Daimler,不过我总下载不下来。。。

现在常用的方法分这么几类—
行人检测的目标是得到每个行人在视频中每帧的空间位置。根据对行人描述(表达)方法的不同,行人检测算法可以基本分为三类:基于形状模板匹配的方法和基于表观特征描述的方法,以及将形状和纹理结合的方法。根据对人体是以一个整体进行检测还是分部件进行检测,又可以将行人检测算法分为基于部件的检测方法和基于整体的检测方法。下面针对国际上常用的行人检测方法进行阐述。
(1)基于形状模板匹配的检测方法
形状是人体明显的一个特征,例如头肩部的“Ω”形、躯干部分的竖直边缘轮廓,可以利用形状之间的相似性来判断图像中是否有行人的存在。Gavrila[3-5]使用一系列人体形状来表示人体形状,然后在测试图像中提取边缘,基于Chamfer距离来评测图像与模板之间的相似性。LinZhe[6]等将人体分为头肩躯干、大腿和小腿三个部件,然后按照从上倒下使用Gavrila提出的方法分层次进行匹配,最后和基于背景建模得到的前景图像进行形状匹配,在检测行人的同时将其大致形状从背景中分割出来。
基于形状匹配方法的优点是直接描述人体的形状,比较直观,检测完成以后可以根据模板的形状和姿势,判断检测到行人的姿势并切割出行人的大致轮廓。但由于其在线检测时很难获得待匹配图像中目标的轮廓,且其利用样本来描述类别的形状,导致其一些显著的缺点:离线训练时的人体外围轮廓需手工标定,边缘提取受背景的影响,没有采取鉴别性学习等
(2)基于表观特征向量的检测方法
基于表观特征向量的检测方法使用能够描述目标表观特性的特征向量表示目标模式和非目标模式,然后使用基于统计学习得到的分类器根据特征向量做出判决。
特征提取将原始的图像灰度(彩色)信息映射到特征空间,其目的是减小待分类类别的类内变化和增大类间变化,理想的特征是不同类别的分布没有交叠,完全可分。特征提取的方法有两种:基于整体特征向量的方法和基于关键点提取的方法。
在基于整体特征向量的方法中,较早用于行人检测的是Haar小波,Papageorgiou[7]等使用Haar小波变化系数描述行人,然后使用线性SVM分类器进行判决,建立了一个基于统计学习和表观特征相结合的行人检测系统。之后,为了避免边缘提取误差,很多方法直接使用梯度信息来表示人体的形状,提高的鲁棒性。例如局部边缘方向直方图EOH[8](Local Edge Orientation Histograms)、Edgelet[9]和Shapelet[10]等,这其中以Dalal[1]等人提出的HOG(Histograms of Oriented Gradients)的工作影响最大。HOG特征成为最近一个主流使用的特征。在找寻更好描述行人特征的同时,另一个发展的趋势的特征融合。实验证明:融合多种能够描述人不同特点的特征,能够获得比仅利用单一特征类型时的检测性能。
基于感兴趣区域的人体描述方法,首先使用感兴趣点(或关键点)提取算法,提取关键区域,然后使用这些感兴趣区域内提取到的特征向量,描述相关的区域,然后使用关键区域的空间位置关系描述人体。由于衣服多样性和人体姿势变化等因素的影响,人体上的感兴趣区域提取不够稳定,限制了该方法的性能。
(3)基于部件检测的方法
Felzenszwalb[11]等人根据人体的关节特性,将人体的分为十个部件,每个部位都有自己的表观特征,部位之间的几何关系允许一定的变化,建立了一个运行形变的基于部件的检测模型。之后对部件的数量进行了改进,以及检测结果的一些特征融合。
基于部件检测的方法在一定程度上可以客服局部遮挡带来的问题,,但是由于这种方法都是人工将人体划分部件,而且要求训练数据中标定每一个部件的位置,造成了人力资源的消耗和性能的不确定性。因此,现在在使用这一方法时,经常与HOG等特征结合使用,以提高性能。

现在主要的检测方法还是以HOG特征为主,我把我看过的几篇论文放在这里,需要的朋友们可以点击下载:
最初提出HOG特征的论文:hog_cvpr2005_ 
这篇文章是研究行人检测的必看文章

Dalal(上面那篇文章的作者)的博士论文:Dalal-phd06(较大,链接在俺的机子上,可能不能下载) 对大家进一步了解HOG会有很大帮助

Fast Hog,对最初的HOG特征进行了改进:Zhu_Fast Human Detection Using a Cascade of Histograms of Oriented Gradients 
这篇论文在原文的基础上加入了积分图,cascade结构。我没有把这篇论文实现,因为cascade中的每一级所使用的弱分类器是svm,训练时间会很长——如文中所述的“a few days”

另外还有Edgelet特征貌似也不错。不过,我没研究过。不做评论。

再链接两篇中国人发的关于行人检测的cvpr:Granularity-tunable Gradients Partition (GGP) Descriptors for Human Detection(翻过,没细研究)

cvpr09-0515-Adaptive Contour Features in Oriented Granular Space for Human Detection(仔细研读了:提出一种新的特征,但是有些特别重要的地方没讲清楚)

现在在INRIA库上的最好结果是:Maji S., Berg A C, Malik J. Classification using Intersection Kernel Support Vector Machine is Efficient. 是对SVM进行了改进。

上面主要是针对图像库来检测的。不能达到实时,要做到实时是不可能的。下面是我草拟的一个行人检测的流程:

离线训练过程:
1.输入为标准图像库中的图像,对于正样本,直接提取特征;对于负样本,多尺度遍历整幅图像,进行特征提取。提取Harr,LBP,HOG三种特征并保存为积分图形式。
2.对于cascade的每一级进行如下操作:用Adaboost进行特征选择,选出最好的特征。
在前面的几级用Harr和LBP这两种计算较快的特征,后几级用HOG。
3.进行级数调整,直到达到要求的检测率和错误率。

检测过程: 1.输入图像,多尺度遍历整幅图像,进行特征提取:提取Harr,LBP,HOG三种特征并保存为积分图形式。 2.将所有子窗口输入训练得到的模型中,如下图,经cascade分类器后,根据检测结果即可标定行人区域,通过一些后处理(例如,合并临近的窗口),就可以对行人进行定位,达到检测的目的。

 

这篇关于行人检测(总结)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/991191

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

二分最大匹配总结

HDU 2444  黑白染色 ,二分图判定 const int maxn = 208 ;vector<int> g[maxn] ;int n ;bool vis[maxn] ;int match[maxn] ;;int color[maxn] ;int setcolor(int u , int c){color[u] = c ;for(vector<int>::iter

整数Hash散列总结

方法:    step1  :线性探测  step2 散列   当 h(k)位置已经存储有元素的时候,依次探查(h(k)+i) mod S, i=1,2,3…,直到找到空的存储单元为止。其中,S为 数组长度。 HDU 1496   a*x1^2+b*x2^2+c*x3^2+d*x4^2=0 。 x在 [-100,100] 解的个数  const int MaxN = 3000

状态dp总结

zoj 3631  N 个数中选若干数和(只能选一次)<=M 的最大值 const int Max_N = 38 ;int a[1<<16] , b[1<<16] , x[Max_N] , e[Max_N] ;void GetNum(int g[] , int n , int s[] , int &m){ int i , j , t ;m = 0 ;for(i = 0 ;

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.