【贪心算法】【Python实现】最优装载问题

2024-05-15 07:12

本文主要是介绍【贪心算法】【Python实现】最优装载问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • @[toc]
      • 问题描述
        • 形式化描述
      • 贪心算法
        • 贪心选择性质
        • 最优子结构性质
      • `Python`实现
      • 时间复杂性

问题描述

  • 有一批集装箱要装上一艘载重量为 c c c的轮船,其中集装箱 i i i的重量为 w i w_{i} wi
  • 在装载体积不受限制的情况下,将尽可能多的集装箱装上轮船
形式化描述

{ max ⁡ ∑ i = 1 n x i ∑ i = 1 n w i x i ≤ c x i ∈ { 0 , 1 } , 1 ≤ i ≤ n \begin{cases} \max\displaystyle\sum\limits_{i = 1}^{n}{x_{i}} \\ \displaystyle\sum\limits_{i = 1}^{n}{w_{i} x_{i}} \leq c \end{cases} \kern{2em} x_{i} \in \set{0 , 1} , 1 \leq i \leq n maxi=1nxii=1nwixicxi{0,1},1in


贪心算法

  • 采用重量最轻者先装的贪心选择策略,可产生最优装载问题的最优解
贪心选择性质
  • 设集装箱已依其重量从小到大排序, ( x 1 , x 2 , ⋯ , x n ) (x_{1} , x_{2} , \cdots , x_{n}) (x1,x2,,xn)是最优装载问题的一个最优解,设 k = min ⁡ 1 ≤ i ≤ n { i ∣ x i = 1 } k = \min\limits_{1 \leq i \leq n}{\set{i \mid x_{i} = 1}} k=1inmin{ixi=1},如果给定的最优装载问题有解,则 1 ≤ k ≤ n 1 \leq k \leq n 1kn
    • k = 1 k = 1 k=1时, ( x 1 , x 2 , ⋯ , x n ) (x_{1} , x_{2} , \cdots , x_{n}) (x1,x2,,xn)是一个满足贪心选择性质的最优解
    • k > 1 k > 1 k>1时,取 y 1 = 1 y_{1} = 1 y1=1 y k = 0 y_{k} = 0 yk=0 y i = x i y_{i} = x_{i} yi=xi 1 < i ≤ n 1 < i \leq n 1<in i ≠ k i \neq k i=k,则 ∑ i = 1 n w i y i = w 1 − w k + ∑ i = 1 n w i x i ≤ ∑ i = 1 n w i x i ≤ c \displaystyle\sum\limits_{i = 1}^{n}{w_{i} y_{i}} = w_{1} - w_{k} + \displaystyle\sum\limits_{i = 1}^{n}{w_{i} x_{i}} \leq \displaystyle\sum\limits_{i = 1}^{n}{w_{i} x_{i}} \leq c i=1nwiyi=w1wk+i=1nwixii=1nwixic,因此, ( y 1 , y 2 , ⋯ , y n ) (y_{1} , y_{2} , \cdots , y_{n}) (y1,y2,,yn)是所给最优装载问题的可行解
  • ∑ i = 1 n y i = ∑ i = 1 n x i \displaystyle\sum\limits_{i = 1}^{n}{y_{i}} = \displaystyle\sum\limits_{i = 1}^{n}{x_{i}} i=1nyi=i=1nxi知, ( y 1 , y 2 , ⋯ , y n ) (y_{1} , y_{2} , \cdots , y_{n}) (y1,y2,,yn)是满足贪心选择性质的最优解,所以,最优装载问题具有贪心选择性质
最优子结构性质
  • ( x 1 , x 2 , ⋯ , x n ) (x_{1} , x_{2} , \cdots , x_{n}) (x1,x2,,xn)是最优装载问题的满足贪心选择性质的最优解,则 x 1 = 1 x_{1} = 1 x1=1 ( x 2 , x 3 , ⋯ , x n ) (x_{2} , x_{3} , \cdots , x_{n}) (x2,x3,,xn)是轮船载重量为 c − w 1 c - w_{1} cw1、待装船集装箱为 { 2 , 3 , ⋯ , n } \set{2 , 3 , \cdots , n} {2,3,,n}时相应最优装载问题的最优解,也就是说,最优装载问题具有最优子结构性质

Python实现

def loading_ship(containers, capacity):# 将集装箱组织成 (索引, 重量) 二元组形式containers = list(enumerate(containers))# 按照集装箱的重量进行排序containers.sort(key=lambda x: x[1])# 记录已经装载的集装箱索引loaded_containers = []# 记录当前已经装载的总重量current_weight = 0# 遍历每个集装箱for index, weight in containers:# 如果当前集装箱的重量加上已经装载的总重量不超过轮船的载重量, 则将集装箱装上轮船if current_weight + weight <= capacity:current_weight += weightloaded_containers.append(index)else:# 如果无法装载当前集装箱, 则退出循环breakloaded_containers.sort()return loaded_containerscontainers = [3, 5, 2, 7, 4, 1]
capacity = 10res = loading_ship(containers, capacity)print(f'装载的集装箱索引: {res}')
装载的集装箱索引: [0, 2, 4, 5]

时间复杂性

  • 算法的主要计算量在于将集装箱依其重量从小到大排序,所以算法所需的计算时间为 O ( n log ⁡ n ) O(n \log{n}) O(nlogn)

这篇关于【贪心算法】【Python实现】最优装载问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/991158

相关文章

MyBatis-Plus逻辑删除实现过程

《MyBatis-Plus逻辑删除实现过程》本文介绍了MyBatis-Plus如何实现逻辑删除功能,包括自动填充字段、配置与实现步骤、常见应用场景,并展示了如何使用remove方法进行逻辑删除,逻辑删... 目录1. 逻辑删除的必要性编程1.1 逻辑删除的定义1.2 逻辑删php除的优点1.3 适用场景2.

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?