Openpose训练coco数据集整理

2024-05-15 00:58

本文主要是介绍Openpose训练coco数据集整理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前言
openspoe比较繁杂,包含了人体姿态估计、手势估计、脸部关键点提取,还有3Dpose,是在caffe上再做的一层封装,但是如果我们实际去用的话,很多都是不需要的,比如openpose里面的多线程,GUI等等,在这里,我是基于coco2014数据集(coco2017也一样),只训练我们关心的openpose中的人体关键点估计,我们可以大致了解到,Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields就是CVPR2016的CPM加上PAF,inference是很直观的,就是提取关键点,算PAF积分,再把关键点放到每个group(就是确定是不是同一个人)完成多人的姿态估计。

二、安装编译caffe_train
caffe_train主要实现了数据的读取;包括cpm_data_layer.cpp和cpm_data_transformer.cpp的两个读取数据文件。在安装之前需要下载一下环境所需的库,其中protobuf是用来定义layers的,leveldb是训练时存储图片数据的数据库,opencv是图像处理库,boost是通用C++库,科学计算和python所需的部分库,以及其他依赖库等;
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install openblas-dev numpy scipy matplotlib lapack-dev freetype-dev libpng-dev openblas-dev
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
安装matlab 参考https://blog.csdn.net/qq_38469553/article/details/82050851
如下是编译caffe的步骤。
1、下载
git clone https://github.com/CMU-Perceptual-Computing-Lab/caffe_train
2、cd caffe
3、cp Makefile.config.example Makefile.config
4、Makefile.config中的一些必要的参数修改
USE_CUDNN := 1 编译GPU版本的caffe
OPENCV_VERSION := 3 反注释掉,支持opencv
PYTHON_INCLUDE := /usr/include/python2.7 
/usr/lib/python2.7/dist-packages/numpy/core/include 需要用python2.7编译
CUDA_DIR := /usr/local/cuda-9.0 指定cuda安装路径
CUDA_ARCH := -gencode arch=compute_30,code=sm_30 
-gencode arch=compute_35,code=sm_35 
-gencode arch=compute_50,code=sm_50 
-gencode arch=compute_50,code=compute_50 根据cuda版本删掉一些参数,例如会报错nvcc fatal : Unsupported gpu architecture 'compute_20’等
MATLAB_DIR := /usr/local/MATLAB/R2016b 要指定系统中安装的matlab
5、Makefile文件中的修改
LIBRARIES参数要做修改,否则回报hdf5相关的错误
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_hl hdf5 \ opencv_core opencv_highgui opencv_imgproc opencv_imgcodecs
6、开始编译caffe
make all -j8
make test
make runtest
7、编译完成需要导入caffe
sudo vim ~/.bashrc
export PYTHONPATH=/home/male/project1/caffe/python:$PYTHONPATH
cd /caffe
make pycaffe

caffe编译完成,python后可以import caffe,不报错。

三、训练openpose模型
要实现训练模型,就是数据的准备和读取了,上面说数据的读取主要由caffe来完成,此处主要就是进行数据的准备工作,主要由以下几个文件完成。
genCOCOMask.m
genJSON.m
genLMDB.py
getANNO.m
主要步骤如下:
git clone https://github.com/ZheC/Realtime_Multi-Person_Pose_Estimation
cd Realtime_Multi-Person_Pose_Estimation
1、原始数据集准备
我们这里可以使用coco2014或者coco2017作为原始训练数据集,所以这一步就是先下载存储数据集,同时要git下了一个cocoAPI。

2、控制台输入 matlab getANNO.m to convert the annotation format from json to mat in dataset/COCO/mat/。
3、控制台输入 matlab genCOCOMask.m 获取未标记人员的图像,
  这里要注意修改Matlab程序中的路径,对应与自己coco数据集的路径 
这里可能会出现一个error:Error in MaskApi.decode (line 84)
masks = maskApiMex( ‘decode’, Rs );
Error in genCOCOMask (line 48)
解决办法:
例如cocoAPI在名为coco/ 的目录下:
(1)cd MatlabAPI ,转到MatlabAPI目录下
(2) 输入matlab ,进入matlab控制台程序
(3)在matlab中输入:
mex(‘CFLAGS=$CFLAGS -Wall -std=c99’,’-largeArrayDims’,‘private/maskApiMex.c’,’…/common/maskApi.c’,’-I…/common/’,’-outdir’,‘private’);
4、控制台输入 matlab genJSON(‘COCO’) , 去生成训练所需的原始信息的json文件,

5、 python genLMDB.py,来生产训练所需的 LMDB文件,这里coco2014数据集对应生产189G。
运行前需要pip install --user lmdb
6、需要修改三个文件的配置

(1)修改pose_solver.prototxt
将其中的snapshot路径修改为自己的路径,其他的参数自行调整。我这里的学习率base_lr=0.00001,
snapshot: 10000,或者可以调节为5000,表示存储模型的迭代次数。
(2)修改pose_train_test.prototxt
第7行输入数据source的路径改为步骤5得到的lmdb的路径;第8行的batch_size可以根据你的服务器的计算能力来修改。
(3)下载预训练模型文件caffemodel
在train_pose.sh中可以看到,此openpose模型是基于VGG_ILSVRC_19_layers.caffemodel来训练的。下载地址:https://gist.github.com/ksimonyan/3785162f95cd2d5fee77
(4)修改train_pose.sh
将其中的运行用的caffe路径改为步骤4编译好的caffe,并指定VGG_ILSVRC_19_layers.caffemodel的存储路径,其他用到的文件的路径可以根据自己需求修改。
7、bash train_pose.sh 就可以开始训练了,后面可以跟0,1表示使用第一块和第二块显卡训练

https://blog.csdn.net/u013486760/article/details/100218875

这篇关于Openpose训练coco数据集整理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/990354

相关文章

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

Python变量与数据类型全解析(最新整理)

《Python变量与数据类型全解析(最新整理)》文章介绍Python变量作为数据载体,命名需遵循字母数字下划线规则,不可数字开头,大小写敏感,避免关键字,本文给大家介绍Python变量与数据类型全解析... 目录1、变量变量命名规范python数据类型1、基本数据类型数值类型(Number):布尔类型(bo

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名