为什么现在的CNN模型都是在GoogleNet、VGGNet或者AlexNet上调整的?

2024-05-14 21:32

本文主要是介绍为什么现在的CNN模型都是在GoogleNet、VGGNet或者AlexNet上调整的?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:周博磊
链接:https://www.zhihu.com/question/43370067/answer/128881262
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
 

更新:如果你觉得这篇回答有意思,也许你对我最近的CVPR'17上发表的比较不同网络可解释性的工作也感兴趣(CVPR 2017 有什么值得关注的亮点?)。

--------------------------------

这是个挺好的问题。AlexNet(https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf), Network in Network(https://arxiv.org/pdf/1312.4400v3.pdf), VGG(https://arxiv.org/pdf/1409.1556.pdf), GoogLeNet(http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf), Resnet(https://arxiv.org/pdf/1512.03385v1.pdf)等CNN网络都是图片分类网络, 都是在imagenet上1.2 million数据训练出来的。由于从这些pretrained网络抽出来的deep feature有良好的generalization的能力,可以应用到其他不同的CV问题,而且比传统的hand-craft feature如SIFT,bag of word要好一大截,所以得到广泛应用。目前大部分的high-level vision相关的问题,都是利用基于CNN的方法了。花点时间去了解这几个核心分类网络的结构和发展,是挺有必要的。

一般来说,某CNN网络在imagenet上面的分类结果越好,其deep feature的generalization能力越强。最近出现蛮多论文,里面在benchmark上面的比较是自己方法的核心网络换成resnet,然后去比别人基于vgg或者alexnet的方法,自然要好不少。所以对于某个CV的问题,选一个优秀的核心网络作为基础,然后fine-tune, 已经是套路,这点从ResNet那篇论文的citation的增长就可以看出来。fine-tune的原因一是训练AlexNet等网络需要imagenet, places等million级别的数据,一般的CV任务都没有这么多数据。二是因为pre-trained model本身的feature已经足够generalizable,可以立刻应用到另外一个CV任务。

至于如何开发出新的CNN分类模型,这就需要积累训练CNN的经验和直觉,以及大量的计算资源来尝试不同的网络结构。一般的研究者和实验室很难负担得起。但如果能搞出个如ResNet一样的牛逼网络,瞬间Best Paper ;), 这也是Kaiming师兄的厉害之处。这里有个八卦,去年Facebook AI Research里面Ross Girshick和Piotor Dollar等大牛带领几个research engineer&intern猛搞COCO challenge, 用上了DeepMask,MultiPath Network等黑科技,可惜最后还是败北于Kaiming领队的MSRA。原因是他们的核心网络还是基于VGG,而Kaiming放出大招ResNet。Resnet比起VGG单在imagenet上的分类结果就要好大概50%,这自然是没法比,甭管怎么个调参和前端如何好的object proposal,输得真是心服口服。这里值得一提的是,Kaiming能提出ResNet,不仅在于他对问题本身深入思考和灵敏的直觉(那篇Dark Channel paper真是直觉的直接体现),也在于他调CNN长期的积累,从spatial pyramid pooling, 到leaky relu, 再到resnet, 中间的确有三年多时间的投入。这里的后话是Kaiming加入FAIR, 跟Piotr Dollar坐到了一块。几个做high-level vision最牛逼的人都在FAIR里面了,很期待他们接下来强强联合会做出如何的研究工作。

最后我再梳理下这些网络之间的关系。我个人觉得这几个网络是这样演变而来的.

AlexNet - > VGG: VGG可以看成是加深版本的AlexNet. 都是conv layer + FC layer. Network in Network -> GoogLeNet: NIN本身大家可能不太熟悉,但是我个人觉得是蛮不错的工作,Lin Min挺厉害。GoogLeNet这篇论文里面也对NIN大为赞赏。NIN利用Global average pooling去掉了FC layer, 大大减少了模型大小,本身的网络套网络的结构,也激发了后来的GoogLeNet里面的各种sub-network和inception结构的设计. ResNet:这个网络跟前面几个网络都不同。我清楚记得这篇论文是在去年年底我去开NIPS的时候release到arxiv上的。当时我开会间歇中看着论文里面在cifar上面的一千层的resnet都目瞪狗呆了。。。然后再看到ResNet刷出了imagenet和COCO各个比赛的冠军,当时就觉得如果这论文是投CVPR, 那是绝对没有争议的Best paper, 果不其然。好像resnet后来又有些争议,说resnet跟highway network很像啥的,或者跟RNN结构类似,但都不可动摇ResNet对Computer Vision的里程碑贡献。当然,训练这些网络,还有些非常重要的trick, 如dropout, batch normalization等也功不可没。等我有时间了可以再写写这些tricks。

再最后,这里潜在的一个问题是这些CNN网络都是在ImageNet上面1.2million数据训练出来的,很难分析是否数据源本身会对CNN造成影响。我和MIT的同事建立了一个10 million级别的场景分类数据库Places Database (Places2: A Large-Scale Database for Scene Understanding)。Places是除了imagenet另外一个可以train CNN from scratch的图片数据库,我们把Places数据和不同pre-trained Places-CNNs都提供下载了。这里我们还做了些有意思的实验,比如说合并imagenet和places的数据,训练hybrid net,其feature也有不同的performance和generalization, 具体见GitHub - metalbubble/places365: The Places365-CNNs和我们的arxiv论文(http://places.csail.mit.edu/places2_arxiv.pdf)。我做了些CNN网络visualization的工作,看这些网络结构里面到底学到了什么东西,以及在物体为核心的Imagenet上和场景为核心的Places数据库上分别训练出来的结果是否不同,大家可以看看我之前的一篇ICLR'15 paper(https://arxiv.org/pdf/1412.6856.pdf)。随着object centric task的饱和,我期待在scene understanding方向会有更好的模型和方法出现

这篇关于为什么现在的CNN模型都是在GoogleNet、VGGNet或者AlexNet上调整的?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/989908

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G