图像相位的重要性

2024-05-14 17:48
文章标签 图像 重要性 相位

本文主要是介绍图像相位的重要性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文主要参考D Ghiglia和M Pritt的《Two Dimensional Phase Unwrapping: Theory, Algorithms and Software》中对相位重要性的例子

 

傅里叶变换

相信很多人都看过知乎上的大神文章,傅里叶变换之掐死教程,傅里叶变换可以将信号从时域转到频域,如下图在时域中的一段声音信号,频域中可以用一个音符来表示。

 

而图像的傅里叶变换,也就是二维傅里叶变换,可以将图像从空间域转到频域中,从中我们可以分别求出幅度谱和相位谱。

那对于一张图片,到底是幅度谱重要,还是相位谱更重要呢?

 

相位的重要性

现在有两张图片,一张是爱因斯坦,另一张是蒙娜丽莎,对这两张图片分别做傅里叶变换得到各自的幅度谱和相位谱

 

当然,只看两张图片的幅度谱和相位谱是看不出来哪个更重要的,但现在我们把

1.爱因斯坦图像的幅度谱蒙娜丽莎图像的相位谱结合,并做逆傅里叶变换。

2.蒙娜丽莎图像的幅度谱爱因斯坦图像的相位谱结合,并做逆傅里叶变换。

这样结合,到底会得到爱因斯坦还是蒙娜丽莎呢?

感兴趣的话可以用matlab写几行代码来实现看看

 

 

 

 

 

 

 

 

 

- - - - - - - - - - - -- - - - - - - - -  - - -- - - - --- - - - - - - 安静当条分割线✂ - - - - -- - - - - - - - - -- - - - - - - - - -- - - - - - - - - - - -  - - - - - - 

 

答案揭晓:

1.爱因斯坦图像的幅度谱蒙娜丽莎图像的相位谱结合,并做逆傅里叶变换,看起来是蒙娜丽莎

2.蒙娜丽莎图像的幅度谱爱因斯坦图像的相位谱结合,并做逆傅里叶变换,看起来是爱因斯坦

 我想这个例子就很好证明了图像的相位的重要性了。

最后划个重点:

图像的相位谱中,保留了图像的边缘以及整体结构的信息,

而错误的幅度谱看起来则像是噪声覆盖在原图上,但对并没有影响图像的内容本身。

 

附两幅图像FFT得到幅度谱、相位谱,交换相位谱后做IFT的matlab代码:

%读入图像
X=imread('x.jpg');
Y=imread('y.jpg');
%转为灰度图
x = rgb2gray(X);
y = rgb2gray(Y);
% 傅里叶变换
xf=fft2(double(x));
yf=fft2(double(y));
%取幅度和相位
xf1=abs(xf);
xf2=angle(xf);yf1=abs(yf);
yf2=angle(yf);
%交换相位
xfr=xf1.*cos(yf2)+xf1.*sin(yf2).*1i;
yfr=yf1.*cos(xf2)+yf1.*sin(xf2).*1i;
%傅里叶逆变换
xr=abs(ifft2(xfr));
yr=abs(ifft2(yfr));
%转换成uint8类型
xf1=uint8(xf1);
xf2=uint8(xf2);
yf1=uint8(yf1);
yf2=uint8(yf2);
xr=uint8(xr);
yr=uint8(yr);
%显示
figure(1)
subplot(2,2,1);imshow(x);title('x 灰度图');
subplot(2,2,2);imshow(y);title('y 灰度图');
subplot(2,2,3);imshow(xr,[]);title('x 幅度谱 与 y相位谱');
subplot(2,2,4);imshow(yr,[]);title('y 幅度谱 与 x相位谱');
figure(2)
subplot(2,2,1);imshow(xf1,[]);title('x 幅度谱 ');
subplot(2,2,2);imshow(yf1,[]);title('y 幅度谱');
subplot(2,2,3);imshow(xf2,[]);title('x 相位谱');
subplot(2,2,4);imshow(yf2,[]);title('y相位谱');

 

部分参考文献:

D Ghiglia, M Pritt.Two Dimensional Phase Unwrapping: Theory, Algorithms and Software[M].

感谢这本书让我提升了英语阅读能力,还学会了经典的相位解包裹算法,如果研究相位解包裹,墙裂推荐~

这篇关于图像相位的重要性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/989429

相关文章

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

Verybot之OpenCV应用一:安装与图像采集测试

在Verybot上安装OpenCV是很简单的,只需要执行:         sudo apt-get update         sudo apt-get install libopencv-dev         sudo apt-get install python-opencv         下面就对安装好的OpenCV进行一下测试,编写一个通过USB摄像头采

可测试,可维护,可移植:上位机软件分层设计的重要性

互联网中,软件工程师岗位会分前端工程师,后端工程师。这是由于互联网软件规模庞大,从业人员众多。前后端分别根据各自需求发展不一样的技术栈。那么上位机软件呢?它规模小,通常一个人就能开发一个项目。它还有必要分前后端吗? 有必要。本文从三个方面论述。分别是可测试,可维护,可移植。 可测试 软件黑盒测试更普遍,但很难覆盖所有应用场景。于是有了接口测试、模块化测试以及单元测试。都是通过降低测试对象

【python计算机视觉编程——7.图像搜索】

python计算机视觉编程——7.图像搜索 7.图像搜索7.1 基于内容的图像检索(CBIR)从文本挖掘中获取灵感——矢量空间模型(BOW表示模型)7.2 视觉单词**思想****特征提取**: 创建词汇7.3 图像索引7.3.1 建立数据库7.3.2 添加图像 7.4 在数据库中搜索图像7.4.1 利用索引获取获选图像7.4.2 用一幅图像进行查询7.4.3 确定对比基准并绘制结果 7.

【python计算机视觉编程——8.图像内容分类】

python计算机视觉编程——8.图像内容分类 8.图像内容分类8.1 K邻近分类法(KNN)8.1.1 一个简单的二维示例8.1.2 用稠密SIFT作为图像特征8.1.3 图像分类:手势识别 8.2贝叶斯分类器用PCA降维 8.3 支持向量机8.3.2 再论手势识别 8.4 光学字符识别8.4.2 选取特征8.4.3 多类支持向量机8.4.4 提取单元格并识别字符8.4.5 图像校正

HalconDotNet中的图像特征与提取详解

文章目录 简介一、边缘特征提取二、角点特征提取三、区域特征提取四、纹理特征提取五、形状特征提取 简介   图像特征提取是图像处理中的一个重要步骤,用于从图像中提取有意义的特征,以便进行进一步的分析和处理。HalconDotNet提供了多种图像特征提取方法,每种方法都有其特定的应用场景和优缺点。 一、边缘特征提取   边缘特征提取是图像处理中最基本的特征提取方法之一,通过检

超越IP-Adapter!阿里提出UniPortrait,可通过文本定制生成高保真的单人或多人图像。

阿里提出UniPortrait,能根据用户提供的文本描述,快速生成既忠实于原图又能灵活调整的个性化人像,用户甚至可以通过简单的句子来描述多个不同的人物,而不需要一一指定每个人的位置。这种设计大大简化了用户的操作,提升了个性化生成的效率和效果。 UniPortrait以统一的方式定制单 ID 和多 ID 图像,提供高保真身份保存、广泛的面部可编辑性、自由格式的文本描述,并且无需预先确定的布局。

Winfrom中解决图像、文字模糊的方法

1.添加清单 2.将清单中的下面内容取消注释

使用亚马逊Bedrock的Stable Diffusion XL模型实现文本到图像生成:探索AI的无限创意

引言 什么是Amazon Bedrock? Amazon Bedrock是亚马逊云服务(AWS)推出的一项旗舰服务,旨在推动生成式人工智能(AI)在各行业的广泛应用。它的核心功能是提供由顶尖AI公司(如AI21 Labs、Anthropic、Cohere、Meta、Mistral AI、Stability AI以及亚马逊自身)开发的多种基础模型(Foundation Models,简称FMs)。