图像归一化处理

2024-05-14 16:36
文章标签 图像 处理 归一化

本文主要是介绍图像归一化处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

归一化

归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为标量。 在多种计算中都经常用到这种方法。

简单介绍

归一化是一种无量纲处理手段,使物理系统数值的绝对值变成某种相对值关系。简化计算,缩小量值的有效办法。 [1]例如,滤波器中各个频率值以截止频率作归一化后,频率都是截止频率的相对值,没有了量纲。阻抗以电源内阻作归一化后,各个阻抗都成了一种相对阻抗值,“欧姆”这个量纲也没有了。等各种运算都结束后,反归一化一切都复原了。信号处理工具箱中经常使用的是nyquist频率,它被定义为采样频率的二分之一,在滤波器的阶数选择和设计中的截止频率均使用nyquist频率进行归一化处理。例如对于一个采样频率为500hz的系统,400hz的归一化频率就为400/500=0.8,归一化频率范围在[0,1]之间。如果将归一化频率转换为角频率,则将归一化频率乘以2*pi,如果将归一化频率转换为hz,则将归一化频率乘以采样频率的一半。

归一条件

在量子力学里,表达粒子的量子态的波函数必须满足归一条件,也就是说,在空间内找到粒子的概率必须等于1。这性质称为归一性。

归一化导引

一般而言,波函数是一个复函数。可是,概率密度是一个实函数,空间内积分和为1,称为概率密度函数。所以在区域内,找到粒子的概率是1。

因为粒子存在于空间,因此在空间内找到粒子概率是1,所以积分于整个空间将得到1。

假若,从解析薛定谔方程而得到的波函数,其概率是有限的,但不等于1,则可以将波函数乘以一个常数,使概率等于1。或者假若波函数内,已经有一个任意常数,可以设定这任意常数的值,使概率等于1

应用

1.复数阻抗可以归一化写为:Z = R + jωL = R(1 + jωL/R)(复数部分变成了纯数了,没有任何量纲)。

2.微波之中也就是电路分析、信号系统、电磁波传输等,有很多运算都可以如此处理,既保证了运算的便捷,又能凸现出物理量的本质含义。

3.在统计学中,归一化的具体作用是归纳统一样本的统计分布性。归一化在0-1之间是统计的概率分布,归一化在-1--+1之间是统计的坐标分布。即该函数在(-∞,+∞)的积分为1。

薛定谔方程的归一化

薛定谔方程为

其中,H是表征波函数总能量的哈密顿算符,是物理系统的波函数,i是虚数。h是约化普朗克常数。

将波函数归一化为。则薛定谔方程成为

对于归一化,薛定谔方程是个不变式,因为薛定谔方程是个线性微分方程。

一个表达粒子量子态的波函数,必须满足粒子的薛定谔方程。既然和都能够满足同样的薛定谔方程,它们必定都表达同样的量子态。假若不使用归一化的波函数,则只能知道概率的相对大小;否则,使用归一化的波函数,可以知道绝对的概率。这对于量子问题的解析,会提供许多便利。

图像处理中的归一化

原因

图像中,若比较两张图片(两张图片的样式:通道数,数据格式相同、大小:分辨率可以不同)

1.比较两张图片大小,需要判断是否相同的时候;

2.求取较小的一张图片在大图中的位置,需要判断的时候。

这个时候,我们可以使用欧式距离来作为判断函数,如下:

基础就是二维中的两点的距离:

若D=0,说明图片相等;或者是小的一张图片已经找到在大图中的位置。但是上面的D值的取值范围太广,甚至可以达到(0,正无穷大),会超出计算机的计算范围。故使用归一化处理。

处理步骤

1.将这个相似性函数展开,可以得:

2.可以看出,只有第二项是有意义的,因为第一项和第三项的值在选定模板后是固定的。对于欧式距离相似函数,值越大表示越不相似,也就是说,第二项的值越小则越不相似。

将第二项进行归一化:

那么当R(i,j)为1时,表示模板与子图完全相等。

概述图像;

这篇关于图像归一化处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/989268

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

MyBatis延迟加载的处理方案

《MyBatis延迟加载的处理方案》MyBatis支持延迟加载(LazyLoading),允许在需要数据时才从数据库加载,而不是在查询结果第一次返回时就立即加载所有数据,延迟加载的核心思想是,将关联对... 目录MyBATis如何处理延迟加载?延迟加载的原理1. 开启延迟加载2. 延迟加载的配置2.1 使用

Android WebView的加载超时处理方案

《AndroidWebView的加载超时处理方案》在Android开发中,WebView是一个常用的组件,用于在应用中嵌入网页,然而,当网络状况不佳或页面加载过慢时,用户可能会遇到加载超时的问题,本... 目录引言一、WebView加载超时的原因二、加载超时处理方案1. 使用Handler和Timer进行超

Python中处理NaN值的技巧分享

《Python中处理NaN值的技巧分享》在数据科学和数据分析领域,NaN(NotaNumber)是一个常见的概念,它表示一个缺失或未定义的数值,在Python中,尤其是在使用pandas库处理数据时,... 目录NaN 值的来源和影响使用 pandas 的 isna()和 isnull()函数直接比较 Na

详解Python中通用工具类与异常处理

《详解Python中通用工具类与异常处理》在Python开发中,编写可重用的工具类和通用的异常处理机制是提高代码质量和开发效率的关键,本文将介绍如何将特定的异常类改写为更通用的ValidationEx... 目录1. 通用异常类:ValidationException2. 通用工具类:Utils3. 示例文

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

Thymeleaf:生成静态文件及异常处理java.lang.NoClassDefFoundError: ognl/PropertyAccessor

我们需要引入包: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><dependency><groupId>org.springframework</groupId><artifactId>sp