常见加解密算法02 - RC4算法分析

2024-05-14 15:04

本文主要是介绍常见加解密算法02 - RC4算法分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RC4是一种广泛使用的流密码,它以其简洁和速度而闻名。区别于块密码,流密码特点在于按位或按字节来进行加密。

RC4由Ron Rivest在1987年设计,尽管它的命名看起来是第四版,实际上它是第一个对外发布的版本。

RC4算法的实施过程简洁明了,主要包括初始化和生成密钥流这两个阶段。

下面我们就一边解析算法,一边分析其代码实现。

初始化

该阶段的核心任务是利用一个可变长度的密钥来初始化一张S盒,即一个包含0至255所有字节的256长度数组。初始化步骤如下:

  • 初始填充S盒,按顺序排列0至255的数值。

  • 使用密钥对S盒进行置换。每个S盒中的元素都会根据密钥中的字节进行一定的交换。这个过程叫做密钥调度算法(KSA)。

说的形象一点就是:在桌子上有256个小盒子(从0到255编号),初始时每个盒子里面的数字和它的编号一样。现在,你开始根据密钥来交换这些盒子里面的数字,直到所有的盒子都被重新排列。

经过多轮置换,这256个数字的顺序就变得无规律。将此与洗牌对比,虽然结果看似随机,实则完全受密钥控制。

现在,我们来看一下代码实现:

private static void initAndPermute(char[] byteKey) {if (byteKey.length > 256 || byteKey.length < 1) {System.out.println("Key length must be between 1 to 256 chars");} else {// Creation of initial state and key byteskeylength = byteKey.length;for (int i = 0; i < 256; i++) {S[i] = i;K[i] = byteKey[i % keylength];}// Permuting state bytes based on values of key bytesint j = 0;for (int i = 0; i < 256; i++) {j = (j + S[i] + K[i]) % 256;int temp = S[i];S[i] = S[j];S[j] = temp;}}
}

第一个 for 循环里面,就是初始化 S 盒。我们还看到同时也给 K 数组赋值了,这里说明了一个问题,K 的长度大于 256 之后,后面的其实没用,所以我们的密钥不用写太长,除非写一个变种算法。

看第二个循环,j = (j + S[i] + K[i]) % 256; 我们把它看成一个数学表达式 j = f(i),这个表达式最终会生成一个 0-255 之间的一个数字 j,然后将 i 与 j 位置进行交换,这样就扰乱了 S 盒的数字顺序。

操作 (PRGA)

在操作阶段,RC4生成伪随机流,称为密钥流。这个密钥流会与明文按位异或来生成密文。同样,将密钥流与密文按位异或,可以得到原始明文。操作过程如下:

  • 初始化两个指针i和j(都开始于0)。

  • 在每次操作中,i递增1,j加上S盒在i位置的值,并使用新的j值来更新S盒中的元素位置。

  • 选取i和j指向的两个元素,将它们加起来,并根据这个总和得到S盒中的某个元素作为密钥流的一部分。

  • 重复此过程,直到生成了足够长的密钥流,可以与明文进行异或操作。

上面的步骤比较难以理解,但是我们利用数学的思想来看:

首先,定义两个变量 i 与 j,然后给它们赋值,i = f(i), j = f(i, j) ,然后再定义一个变量 key,key = f2(i, j) 。这个key就是根据 S 盒生成的密钥流,只要 S 的顺序固定,那么生成的密钥流就是固定的。有了密钥流,那么我们就可以与明文做异或操作。

看代码:

private static char[] encryptRC4(char[] plainText) {char[] cipherText = new char[plainText.length];int i = 0;int j = 0;int key;int plainTextLen = 0;while (plainTextLen < plainText.length) {// Key generationi = (i + 1) % 256;j = (j + S[i]) % 256;int temp = S[i];S[i] = S[j];S[j] = temp;key = S[(S[i] + S[j]) % 256];// EncryptioncipherText[plainTextLen] = (char) (plainText[plainTextLen] ^ key);plainTextLen++;}return cipherText;
}

有的小伙伴可能想得多一点,既然是使用异或做操作,那么加密算法其实就是解密算法!

是的,异或这个东西很神奇, x ^ y ^ y 还是 x。既然加密算法保证了 S 一定的情况下,生成的 key 是一样的,所以解密算法可以直接使用加密算法。

C 实现

#define N 256   // 2^8void swap(unsigned char *a, unsigned char *b) {int tmp = *a;*a = *b;*b = tmp;
}int KSA(char *key, unsigned char *S) {int len = strlen(key);int j = 0;for(int i = 0; i < N; i++)S[i] = i;for(int i = 0; i < N; i++) {j = (j + S[i] + key[i % len]) % N;swap(&S[i], &S[j]);}return 0;
}int PRGA(unsigned char *S, char *plaintext, unsigned char *ciphertext) {int i = 0;int j = 0;for(size_t n = 0, len = strlen(plaintext); n < len; n++) {i = (i + 1) % N;j = (j + S[i]) % N;swap(&S[i], &S[j]);int rnd = S[(S[i] + S[j]) % N];ciphertext[n] = rnd ^ plaintext[n];}return 0;
}int RC4(char *key, char *plaintext, unsigned char *ciphertext) {unsigned char S[N];KSA(key, S);PRGA(S, plaintext, ciphertext);return 0;
}

总结

RC4的好处是它很简单,很快,在没有密钥的情况下只能使用暴力破解。所以,你的密钥很重要,你得特别小心使用它。

这篇关于常见加解密算法02 - RC4算法分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/989069

相关文章

Spring常见错误之Web嵌套对象校验失效解决办法

《Spring常见错误之Web嵌套对象校验失效解决办法》:本文主要介绍Spring常见错误之Web嵌套对象校验失效解决的相关资料,通过在Phone对象上添加@Valid注解,问题得以解决,需要的朋... 目录问题复现案例解析问题修正总结  问题复现当开发一个学籍管理系统时,我们会提供了一个 API 接口去

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit