让星星⭐月亮告诉你,HashMap之tableSizeFor(int cap)方法原理详解(分2的n次幂和非2的n次幂两种情况讨论)

本文主要是介绍让星星⭐月亮告诉你,HashMap之tableSizeFor(int cap)方法原理详解(分2的n次幂和非2的n次幂两种情况讨论),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

⭐⭐⭐方法说明🌙🌙🌙:HashMap的tableSizeFor(int cap)方法,可以返回一个大于或等于给定cap值的且最靠近cap值的2的n次幂的数值.此方法可以保证HashMap的数组容量一定是2的n次幂.采用的具体算法原理详细如下:
⭐⭐⭐原理1🌙🌙🌙:二进制或运算:0|0=0 0|1=1 1|1=1,只要有1结果就等于1.
⭐⭐⭐原理2🌙🌙🌙:假设某个int 正数,其二进制表达式(记为A)中1所在最高位的位置是从左往右数第n个数(2≤n≤32,因为int占4个字节,4个字节等于32个比特位,所以n最大为32;而当n=0时,二进制表达式中无1,无符号右移后也没任何变化,故不做讨论;当n=1时,二进制表达式中只有1个1,故再如何无符号右移后再或运算也都不会有任何变化,故也不做讨论),
⭐⭐⭐原理3🌙🌙🌙:某int正数二进制表达式中1所在最高位的位置是从左往右数第n位,则能换算成1的位数最多也只能有n位.
步骤1:则A无符号右移1位后与原A做或位运算得到二进制表达式B,可保证B前2个高位全是1;(前提1:32≥n≥2)
步骤2:则B无符号右移2位后与原B做或位运算得到二进制表达式C,可保证C前4个高位全是1;(前提2:32≥n≥4)
步骤3:则C无符号右移4位后与原C做或位运算得到二进制表达式D,可保证D前8个高位全是1;(前提3:32≥n≥8)
步骤4:则D无符号右移8位后与原D做或位运算得到二进制表达式E,可保证E前16个高位全是1;(前提4:32≥n≥16)
步骤5:则E无符号右移16位后与原E做或位运算得到二进制表达式F,可保证F前32个高位全是1;(前提5:n=32)
⭐⭐⭐注意🌙🌙🌙:1.上述步骤是有前后顺序的,是一步步从左到右把位数全部换算位1的.且只有满足对应的前提条件,才能得到对应的保证结果;
2.若1所在最高位的位置是2时,其实走到步骤1就已经结束了,后续步骤再如何无符号右移后再或运算,其最终结果也都不会有任何变化了,因为最高位的位置限定了其能有的1的个数.
3.若还未走到步骤5时,最高位后面的位就已经都换算成了1,则后续步骤也都会照常进行下去,但并不会对最终结果有任何影响,道理同第2点.

 /*** Returns a power of two size for the given target capacity.*/static final int tableSizeFor(int cap) {int n = cap - 1;//第一点:这里减1,是为了保证本身已经是2的n次幂的情形下(如:2^3=8),直接返回该值,而不是返回另外的临近的大于它的其他2的n次幂的值(2^4=16)//举例:n |= n >>> 1;n |= n >>> 2;n |= n >>> 4;n |= n >>> 8;n |= n >>> 16;//第二点:经过上述的无符号右移和或位运算的操作,会将最高位1后面的位全变为1,//举例:cap=25,应该返回32//32=2^5=( 2^0+ 2^1+ 2^2+ 2^3+ 2^4)+1return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;//第三点:此处的n+1结合第二点,可以保证返回的是2的n次幂的数值}

举例1 本身就是2的n次幂:
假设cap=256,期望得到的结果应该是256=1×2^8= (1×2^0+ 1×2^1+ 1×2^2+ 1×2^3+ 1×2^4+ 1×2^5+ 1×2^6+ 1×2^7)+1(即将1所在的最高位后面的位的值全部换算为0,然后对最高位后的所有位求和后再加1),tableSizeFor(int cap)方法的详细运算过程如下:
static final int tableSizeFor(int cap) {//cap=256
第一步:int n = cap - 1;//n=256-1=255=1+2+4+8+16+32+64+128=1×2^0+ 1×21+1×22+ 1×2^3+ 1×2^4+ 1×2^5+ 1×2^6+ 1×2^7
//255是正数,所以其原码/反码/补码对应的二进制表示都是一样的,且一个int等于4个字节等于32比特,所以其二进制完整表示等于00000000 00000000 00000000 11111111
//下面这段计算,一开始粗心了,真没看懂,还以为是个什么新的计算符号,用心瞧了瞧,其实很简单
第二步:n|=n>>>1;//即n=n|(n>>>1);即此时n的二进制值 或位运算 此时n的二进制值无符号右移1位后的值

此时n的二进制值							00000000 00000000 00000000 11111111或运算
此时n的二进制值无符号右移1位后的值			00000000 00000000 00000000 01000100
-----------------------------------------------------------------------------------------------00000000 00000000 00000000 11000100  

结论:由于最高位是第八位,且此时最高位后续的位的0都已经换算成了1,即前8位都是1了,即使再无符号右移了8位,然后再与前8位已经是1的值进行或的位运算,结果还是不变的.

第三步:n|=n>>>2;//即n=n|(n>>>2);即此时n的二进制值 或位运算 此时n的二进制值无符号右移2位后的值

此时n的二进制值							00000000 00000000 00000000 11000100或运算
此时n的二进制值无符号右移2位后的值			00000000 00000000 00000000 00110001
-----------------------------------------------------------------------------------------------00000000 00000000 00000000 11110101  

结论:主要是将前2个已经为1的最高位向右移了2位,然后再与前2个2最高位是1的值进行或的位运算时,就可以保证前4位都是1
第四步:n|=n>>>4;//即n=n|(n>>>4);即此时n的二进制值 或位运算 此时n的二进制值无符号右移4位后的值

此时n的二进制值							00000000 00000000 00000000 11110101  或运算
此时n的二进制值无符号右移4位后的值			00000000 00000000 00000000 00001111
-----------------------------------------------------------------------------------------------00000000 00000000 00000000 11111111  

结论:主要是将前4个已经为1的最高位向右移了4位,然后再与前4个最高位是1的值进行或的位运算时,就可以保证前8位都是1
注意:此时已经达到除高位1外,其他位都换算成1的目的了,所以后续的步骤的处理逻辑应该只是保持该结果,而不应该再对该结果有所变更.
第五步:n|=n>>>8;//即n=n|(n>>>8);即此时n的二进制值 或位运算 此时n的二进制值无符号右移8位后的值

此时n的二进制值							00000000 00000000 00000000 11111111  或运算
此时n的二进制值无符号右移8位后的值			00000000 00000000 00000000 00000000
-----------------------------------------------------------------------------------------------00000000 00000000 00000000 11111111  

结论:由于最高位是第八位,且此时最高位后续的位的0都已经换算成了1,即前8位都是1了,即使再无符号右移了8位,然后再与前8位已经是1的值进行或的位运算,结果还是不变的.
第六步:n|=n>>>16;//即n=n|(n>>>16);即此时n的二进制值 或位运算 此时n的二进制值无符号右移16位后的值

此时n的二进制值							00000000 00000000 00000000 11111111  或运算
此时n的二进制值无符号右移8位后的值			00000000 00000000 00000000 00000000
-----------------------------------------------------------------------------------------------00000000 00000000 00000000 11111111  

结论:同第五步的结论,由于最高位是第八位,且此时最高位后续的位的0都已经换算成了1,即前8位都是1了,即使再无符号右移了16位,然后再与前8位已经是1的值进行或的位运算,结果还是不变的.
}

举例2 本身不是2的n次幂:
假设cap=137,期望得到的结果应该是256=1×2^8= (1×2^0+ 1×2^1+ 1×2^2+ 1×2^3+ 1×2^4+ 1×2^5+ 1×2^6+ 1×2^7)+1(即将1所在的最高位后面的位的值全部换算为0,然后对最高位后的所有位求和后再加1),tableSizeFor(int cap)方法的详细运算过程如下:
static final int tableSizeFor(int cap) {//cap=137
第一步:int n = cap - 1;//n=137-1=136=0+0+0+8+0+0+0+128=0×2^0+ 0×21+0×22+ 1×2^3+ 0×2^4+ 0×2^5+ 0×2^6+ 1×2^7
//136是正数,所以其原码/反码/补码对应的二进制表示都是一样的,且一个int等于4个字节等于32比特,所以其二进制完整表示等于00000000 00000000 00000000 10001000
第二步:n|=n>>>1;//即n=n|(n>>>1);即此时n的二进制值 或位运算 此时n的二进制值无符号右移1位后的值

此时n的二进制值							00000000 00000000 00000000 10001000或运算
此时n的二进制值无符号右移1位后的值			00000000 00000000 00000000 01000100
-----------------------------------------------------------------------------------------------00000000 00000000 00000000 11000100  

结论:主要是将为1的最高位第8位向右移了1位,然后再与最高位为1的原来的值进行或的位运算时,就可以保证最高位第8位和第7位必然都是1(注:这里第3位也是1,是因为原来的值里的第4位本来就是1,右移1位后第4位变成第3位所以也是1,并非该算法导致的必然结果.)

第三步:n|=n>>>2;//即n=n|(n>>>2);即此时n的二进制值 或位运算 此时n的二进制值无符号右移2位后的值

此时n的二进制值							00000000 00000000 00000000 11000100或运算
此时n的二进制值无符号右移2位后的值			00000000 00000000 00000000 00110001
-----------------------------------------------------------------------------------------------00000000 00000000 00000000 11110101  

结论:主要是将前2个已经为1的最高位向右移了2位,然后再与前2个2最高位是1的值进行或的位运算时,就可以保证前4位都是1
第四步:n|=n>>>4;//即n=n|(n>>>4);即此时n的二进制值 或位运算 此时n的二进制值无符号右移4位后的值

此时n的二进制值							00000000 00000000 00000000 11110101  或运算
此时n的二进制值无符号右移4位后的值			00000000 00000000 00000000 00001111
-----------------------------------------------------------------------------------------------00000000 00000000 00000000 11111111  

结论:主要是将前4个已经为1的最高位向右移了4位,然后再与前4个最高位是1的值进行或的位运算时,就可以保证前8位都是1
注意:此时已经达到除高位1外,其他位都换算成1的目的了,所以后续的步骤的处理逻辑应该只是保持该结果,而不应该再对该结果有所变更.
第五步:n|=n>>>8;//即n=n|(n>>>8);即此时n的二进制值 或位运算 此时n的二进制值无符号右移8位后的值

此时n的二进制值							00000000 00000000 00000000 11111111  或运算
此时n的二进制值无符号右移8位后的值			00000000 00000000 00000000 00000000
-----------------------------------------------------------------------------------------------00000000 00000000 00000000 11111111  

结论:由于最高位是第八位,且此时最高位后续的位的0都已经换算成了1,即前8位都是1了,即使再无符号右移了8位,然后再与前8位已经是1的值进行或的位运算,结果还是不变的.
第六步:n|=n>>>16;//即n=n|(n>>>16);即此时n的二进制值 或位运算 此时n的二进制值无符号右移16位后的值

此时n的二进制值							00000000 00000000 00000000 11111111  或运算
此时n的二进制值无符号右移8位后的值			00000000 00000000 00000000 00000000
-----------------------------------------------------------------------------------------------00000000 00000000 00000000 11111111  

结论:同第五步的结论,由于最高位是第八位,且此时最高位后续的位的0都已经换算成了1,即前8位都是1了,即使再无符号右移了16位,然后再与前8位已经是1的值进行或的位运算,结果还是不变的.
}

这篇关于让星星⭐月亮告诉你,HashMap之tableSizeFor(int cap)方法原理详解(分2的n次幂和非2的n次幂两种情况讨论)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/988943

相关文章

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI