CHATGLM3应用指南(三)——模型微调

2024-05-14 07:04

本文主要是介绍CHATGLM3应用指南(三)——模型微调,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CHATGLM3的本地部署可以见博客:CHATGLM3应用指南(一)——本地部署_chatglm3需要多大内存-CSDN博客

一、微调数据集制作

数据集的形式如下图所示:

 可使用下面代码对数据集格式调整

#! /usr/bin/env python
print('!!!!!')
import json
from collections import Counter
from argparse import ArgumentParser
import osparser = ArgumentParser()
parser.add_argument("--path", type=str, required=True)args = parser.parse_args()
print(args.path)
print('!!!!!')
with open(args.path ,encoding="utf-8") as f:data = [json.loads(line) for line in f]train_examples = [{"prompt": x['content'],"response": x['summary'],
} for x in data]os.makedirs("formatted_data", exist_ok=True)with open("formatted_data/EE_term_define_2.jsonl", "w",encoding="utf-8") as f:for e in train_examples:f.write(json.dumps(e, ensure_ascii=False) + "\n")

二、微调模型的训练

运行finetune_pt.sh文件,使用命令

sh finetune_pt.sh

二、微调模型的推理

(1)在终端输入“jupyter notebook”

跳转到浏览器的jupyter 

(2)创建以下的.ipynb文件

import argparse
from transformers import AutoConfig, AutoModel, AutoTokenizer
import torch
import os# parser = argparse.ArgumentParser()
# parser.add_argument("--pt-checkpoint", type=str, default=r"D:\Jupyter_file\ChatGLM3\chatgalm3-6b\finetune_demo\output\advertise_gen_pt-20231206-201809-128-2e-2\checkpoint-1000", help="The checkpoint path")
# parser.add_argument("--model", type=str, default=r"D:\Jupyter_file\ChatGLM3\chatgalm3-6b", help="main model weights")
# parser.add_argument("--tokenizer", type=str, default=None, help="main model weights")
# parser.add_argument("--pt-pre-seq-len", type=int, default=128, help="The pre-seq-len used in p-tuning")
# parser.add_argument("--device", type=str, default="cuda")
# parser.add_argument("--max-new-tokens", type=int, default=128)args={'pt_checkpoint':r"D:\Project\ChatGLM3\finetune_demo\output\advertise_gen_pt-20231206-201809-128-2e-2\checkpoint-1000",'model':r"D:\Project\LLM\Model\llm\chatglm3",'tokenizer':None,'pt-pre-seq-len':128,'device':"cuda",'max_new_tokens':128}
if args['tokenizer'] is None:args['tokenizer'] = args['model']if args['pt_checkpoint']:tokenizer = AutoTokenizer.from_pretrained(args['tokenizer'], trust_remote_code=True)config = AutoConfig.from_pretrained(args['model'], trust_remote_code=True, pre_seq_len=128)model = AutoModel.from_pretrained(args['model'], config=config, trust_remote_code=True)prefix_state_dict = torch.load(os.path.join(args['pt_checkpoint'], "pytorch_model.bin"))new_prefix_state_dict = {}for k, v in prefix_state_dict.items():if k.startswith("transformer.prefix_encoder."):new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = vmodel.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
else:tokenizer = AutoTokenizer.from_pretrained(args['tokenizer'], trust_remote_code=True)model = AutoModel.from_pretrained(args['model'], trust_remote_code=True)model = model.to(args['device'])while True:prompt = input("Prompt:")inputs = tokenizer(prompt, return_tensors="pt")inputs = inputs.to(args['device'])response = model.generate(input_ids=inputs["input_ids"], max_length=inputs["input_ids"].shape[-1] + args['max_new_tokens'])response = response[0, inputs["input_ids"].shape[-1]:]print("Response:", tokenizer.decode(response, skip_special_tokens=True))

(3)修改“pt_checkpoint”为自己训练好的微调模型的“output”文件夹,修改“model”为chatglm3—6b底座模型的存放路径。

(4)确认所使用的内核,如果不对应,可以点击“内核” —>“更换内核”(5)点击运行,等待一段时间后,在prompt输入提示词,即可出现回答。

这篇关于CHATGLM3应用指南(三)——模型微调的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/988070

相关文章

SpringBoot整合OpenFeign的完整指南

《SpringBoot整合OpenFeign的完整指南》OpenFeign是由Netflix开发的一个声明式Web服务客户端,它使得编写HTTP客户端变得更加简单,本文为大家介绍了SpringBoot... 目录什么是OpenFeign环境准备创建 Spring Boot 项目添加依赖启用 OpenFeig

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

CentOS7更改默认SSH端口与配置指南

《CentOS7更改默认SSH端口与配置指南》SSH是Linux服务器远程管理的核心工具,其默认监听端口为22,由于端口22众所周知,这也使得服务器容易受到自动化扫描和暴力破解攻击,本文将系统性地介绍... 目录引言为什么要更改 SSH 默认端口?步骤详解:如何更改 Centos 7 的 SSH 默认端口1

SpringBoot多数据源配置完整指南

《SpringBoot多数据源配置完整指南》在复杂的企业应用中,经常需要连接多个数据库,SpringBoot提供了灵活的多数据源配置方式,以下是详细的实现方案,需要的朋友可以参考下... 目录一、基础多数据源配置1. 添加依赖2. 配置多个数据源3. 配置数据源Bean二、JPA多数据源配置1. 配置主数据

python中各种常见文件的读写操作与类型转换详细指南

《python中各种常见文件的读写操作与类型转换详细指南》这篇文章主要为大家详细介绍了python中各种常见文件(txt,xls,csv,sql,二进制文件)的读写操作与类型转换,感兴趣的小伙伴可以跟... 目录1.文件txt读写标准用法1.1写入文件1.2读取文件2. 二进制文件读取3. 大文件读取3.1

SpringBoot中配置Redis连接池的完整指南

《SpringBoot中配置Redis连接池的完整指南》这篇文章主要为大家详细介绍了SpringBoot中配置Redis连接池的完整指南,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以... 目录一、添加依赖二、配置 Redis 连接池三、测试 Redis 操作四、完整示例代码(一)pom.

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字