Cracking Public keys

2024-05-14 04:04
文章标签 public keys cracking

本文主要是介绍Cracking Public keys,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Public keys

I have generated public keys for each of you. You can download the public keys here: public-keys.tgz (hps:/umd.instructure.com/courses/1358965/files/78500682?wrap=1) (hps:/umd.instructure.com/courses/1358965/files/78500682/download?download_frd=1)

Inside this tarball, you will find a set of directories, one for each of you. To determine which one is yours, take the SHA-256 hash of your UID (with no whitespace and no newline at the end), and take the 5 least significant hex digits; that's your directory.

Within your directory, you will see 7 different RSA public keys, all stored in PEM format, ranging in sizes from 64 to 2048. Your goal is to determine what the private keys are.

For example, here is an example of a 128-bit private RSA key in PEM format:

Hmm, that's not very useful; to see what the actual values are from this, you can run this (assuming the name of the file is publickey.pem

At which point you would see this

As you can see, we learned two things: the modulus N and the exponent e. These are the two parts of the public key: N and e. Let's understand what these mean...

Background on RSA

-----BEGIN PUBLIC KEY-----
MCwwDQYJKoZIhvcNAQEBBQADGwAwGAIRAPA7ineD+ahwXCDkjmk9uYUCAwEAAQ==
-----END PUBLIC KEY-----

openssl rsa -pubin -in publickey.pem -text
RSA Public-Key: (128 bit)
Modulus:
    00:f0:3b:8a:77:83:f9:a8:70:5c:20:e4:8e:69:3d:
    b9:85
Exponent: 65537 (0x10001)

RSA encrypon works through modular exponenaon (taking powers mod some number). To encrypt a message m, we raise m to the public exponent e mod the modulus N:

The modulus N is always the product of two large primes p and q. While N is made public, the precise values of p and q MUST remain private (we will see why in a moment). RSA is built on the belief that it is difficult to factor the product of two large primes. (If and when quantum computers become viable, factoring such large numbers will be easy, which will render RSA useless.)

In addion to this public exponent e, there is also a private exponent d; to decrypt a message, you just raise the ciphertext to that exponent mod the same modulus N:

Oen, e is some common fixed value (0x10001); it's d that is difficult to predict.
In a very real sense, e and d are "inverses" of one another, but only in the exponents of mod N.

In normal arithmec, if I have and I know e, then it is very easy to recover m; I just raise it to the power of . But in modular arithmec, you can't just compute inverses unless you know the modulus. Um, but don't you already know the modulus? I already said it's N.. well, not quite..

You see, a strange thing happens in modular arithmec. When operang over mod N, the exponents operate over a different modulus: they operate over mod , the Euler toent funcon. This has a rigorous definion, but for the sake of RSA moduli—which are always the products of two random primes p and q, the definion becomes very easy:

So, if you knew how to factor N, then you could easily calculate (p-1)(q-1), and once you know that P

There will be a git repository set up for you called extracredit ; for each key you crack, create a file called <keysize>.txt containing THREE lines:

1. p (the smaller of the two primes) 2. q (the larger of the two primes) 3. d (the private exponent)

and e, then you can easily compute
Cracking keys 5 Points

5/14/2024

Your task / what to submit: Crack the keys

Add Comment Your task is to compute these private exponents d for as many of the RSA public keys as you can.

ossible

For each of these values, provide it in hex format where each byte (two hex digits) are separated by a colon. For instance, the answer to the above public key should look like this, in a file called 128.txt

In addion to these .txt files, you must also submit all of the code that you used to crack the keys, as well as a file called Writeup.txt describing how you went about cracking them, in your own words.

Grading

You have to crack your keys; if you crack someone else's then you get no credit, so please be sure to check that you are working in the right directory!

Each key you crack will get you an extra point added to your final grade, up to a maximum of 5 points.

Addendum

In case you are curious, the corresponding private key PEM for the above public key is

To beer understand what is in this, you can run (assuming it's stored in a file called 128.pem ): openssl rsa -in 128.pem -text

这篇关于Cracking Public keys的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/987696

相关文章

Java访问修饰符public、private、protected及默认访问权限详解

《Java访问修饰符public、private、protected及默认访问权限详解》:本文主要介绍Java访问修饰符public、private、protected及默认访问权限的相关资料,每... 目录前言1. public 访问修饰符特点:示例:适用场景:2. private 访问修饰符特点:示例:

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

DBeaver 连接 MySQL 报错 Public Key Retrieval is not allowed

DBeaver 连接 MySQL 报错 Public Key Retrieval is not allowed 文章目录 DBeaver 连接 MySQL 报错 Public Key Retrieval is not allowed问题解决办法 问题 使用 DBeaver 连接 MySQL 数据库的时候, 一直报错下面的错误 Public Key Retrieval is

c++ public、protected 、 private访问修饰符详解

在 C++ 中,访问修饰符用于控制类的成员(数据成员和成员函数)的访问权限。主要的访问修饰符有三个:public、protected 和 private。每种修饰符的访问规则如下: 1. public 定义:public 修饰符表示该成员对所有代码都是可见的,任何对象都可以访问和修改。作用:允许类外部的代码访问这些成员。 class Example {public:int publicVa

访问修饰符public、protected、private,基于C++

一、基本概念 公有(public)成员   公有成员在程序中类的外部是可访问的。您可以不使用任何成员函数来设置和获取公有变量的值, 私有(private)成员  私有成员变量或函数在类的外部是不可访问的,甚至是不可查看的。只有类和友元函数可以访问私有成员。 默认情况下,类的所有成员都是私有的。例如在下面的类中,width 是一个私有成员,这意味着,如果您没有使用任何访问修饰符,类的成

JAVA反射使用父类的非public方法(getMethods()和getDeclaredMethods()区别)

getMethods()和getDeclaredMethods()区别 虽然是老生常谈了,但是还是要先说一下两者的区别。 getMethods():能够获取类的所有public方法,包括自身定义的以及从父类继承的。 getDeclaredMethods():能够获取类本身的所有方法,包括private方法,实现的接口方法,但是不能获取从父类继承的非public方法。 因此getDeclaredM

Redis keys 基本命令

Redis keys 命令 下表给出了与 Redis 键相关的基本命令: 序号 命令及描述 1 DEL key 该命令用于在 key 存在时删除 key。不存在的 key 会被忽略。可用于删除多个key , 各key之间用空格间隔 del key1 key2 2 DUMP key  序列化给定 key ,并返回被序列化的值。 3 exists key  检查给定 key 是否存在。

【vs C++】error LNK2019: 无法解析的外部符号 public: void __thiscall

1 很多编译器显示错误,并不是本行,而是上一行的错误(看出错前后几行一般能找到问题) 2 一般报一堆错误,找第一个错误改了再编 Log 出现这个错误,应该首先查看“#include”语句是否包含,或者是否包含正确。符号无法解析意味着编译器知道有这个符号存在,也就是有声明,但在链接时,找不到实现代码,那么就去看看报错的这个函数有没有实现代码。如果它们的确已经有了,还是出现这个错误,就把它们重

Pandas-高级处理(二):连接与修补【concat(参数:axis、join、keys)、combine_first(根据index,df1的空值被df2替代)】

一、连接(concat):沿轴执行连接操作 pd.concat([data1, data2], axis=1):按照行或列进行连接操作: axis=0为列索引;axis=1为行索引; 比如我们将刚才处理好的one-hot编码与原数据连接 1、参数:axis import pandas as pd# 连接:concats1 = pd.Series([1, 2, 3])s2 = pd.Se

pandas errors Pattern matched multiple keys

Set some Pandas options as you like old version #pd.set_option(‘max_columns’, 40) #pd.set_option(‘max_rows’, 30) new version pd.options.display.max_rows=30 pd.options.display.max_columns=40