Pandas-高级处理(二):连接与修补【concat(参数:axis、join、keys)、combine_first(根据index,df1的空值被df2替代)】

本文主要是介绍Pandas-高级处理(二):连接与修补【concat(参数:axis、join、keys)、combine_first(根据index,df1的空值被df2替代)】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、连接(concat):沿轴执行连接操作

pd.concat([data1, data2], axis=1):按照行或列进行连接操作:

  • axis=0为列索引;
  • axis=1为行索引;

比如我们将刚才处理好的one-hot编码与原数据连接

1、参数:axis

import pandas as pd# 连接:concats1 = pd.Series([1, 2, 3])
s2 = pd.Series([2, 3, 4])s3 = pd.Series([1, 2, 3], index=['a', 'c', 'h'])
s4 = pd.Series([2, 3, 4], index=['b', 'e', 'd'])print("s1 = \n", s1)
print('-' * 50)
print("s2 = \n", s2)
print('-' * 50)
print("s3 = \n", s3)
print('-' * 50)
print("s4 = \n", s4)
print('-' * 200)# 默认axis=0,行+行
data1 = pd.concat([s1, s2])
print("data1 = pd.concat([s1,s2]) = \n", data1)
print('-' * 200)data2 = pd.concat([s3, s4]).sort_index()
print("data2 = pd.concat([s3,s4]).sort_index() = \n", data2)
print('-' * 200)# axis=1,列+列,成为一个Dataframe
data3 = pd.concat([s3, s4], axis=1)
print("data3 = pd.concat([s3,s4], axis=1) = \n", data3)
print('-' * 200)

打印结果:

s1 = 0    1
1    2
2    3
dtype: int64
--------------------------------------------------
s2 = 0    2
1    3
2    4
dtype: int64
--------------------------------------------------
s3 = a    1
c    2
h    3
dtype: int64
--------------------------------------------------
s4 = b    2
e    3
d    4
dtype: int64
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
data1 = pd.concat([s1,s2]) = 0    1
1    2
2    3
0    2
1    3
2    4
dtype: int64
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
data2 = pd.concat([s3,s4]).sort_index() = a    1
b    2
c    2
d    4
e    3
h    3
dtype: int64
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
data3 = pd.concat([s3,s4], axis=1) = 0    1
a  1.0  NaN
c  2.0  NaN
h  3.0  NaN
b  NaN  2.0
e  NaN  3.0
d  NaN  4.0
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Process finished with exit code 0

2、参数:join

import pandas as pd# 连接方式:joins5 = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
s6 = pd.Series([2, 3, 4], index=['b', 'c', 'd'])
print("s5 = \n", s5)
print('-' * 50)
print("s6 = \n", s6)
print('-' * 200)data1 = pd.concat([s5, s6], axis=1)
print("data1 = pd.concat([s5,s6], axis= 1) = \n", data1)
print('-' * 200)# join:{'inner','outer'},默认为“outer”。如何处理其他轴上的索引。outer为联合和inner为交集。
data3 = pd.concat([s5, s6], axis=1, join='inner')
print("data3 = pd.concat([s5,s6], axis= 1, join='inner') = \n", data3)
print('-' * 200)

打印结果:

s5 = a    1
b    2
c    3
dtype: int64
--------------------------------------------------
s6 = b    2
c    3
d    4
dtype: int64
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
data1 = pd.concat([s5,s6], axis= 1) = 0    1
a  1.0  NaN
b  2.0  2.0
c  3.0  3.0
d  NaN  4.0
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
data3 = pd.concat([s5,s6], axis= 1, join='inner') = 0  1
b  2  2
c  3  3
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Process finished with exit code 0

3、参数:keys

import pandas as pd# 连接方式:joins5 = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
s6 = pd.Series([2, 3, 4], index=['b', 'c', 'd'])
print("s5 = \n", s5)
print('-' * 50)
print("s6 = \n", s6)
print('-' * 200)# 覆盖列名
# keys:序列,默认值无。使用传递的键作为最外层构建层次索引
sre1 = pd.concat([s5, s6], keys=['one', 'two'])
print("sre1 = \n{0} \ntype(sre1) = {1}".format(sre1, type(sre1)))
print('-' * 50)
print("sre.index = \n", sre1.index)
print('-' * 200)# axis = 1, 覆盖列名
sre2 = pd.concat([s5, s6], axis=1)
print("sre2 = \n{0} \ntype(sre2) = {1}".format(sre2, type(sre2)))
print('-' * 50)
sre3 = pd.concat([s5, s6], axis=1, keys=['one', 'two'])
print("sre3 = \n{0} \ntype(sre3) = {1}".format(sre3, type(sre3)))

打印结果:

s5 = a    1
b    2
c    3
dtype: int64
--------------------------------------------------
s6 = b    2
c    3
d    4
dtype: int64
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
sre1 = 
one  a    1b    2c    3
two  b    2c    3d    4
dtype: int64 
type(sre1) = <class 'pandas.core.series.Series'>
--------------------------------------------------
sre.index = MultiIndex([('one', 'a'),('one', 'b'),('one', 'c'),('two', 'b'),('two', 'c'),('two', 'd')],)
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
sre2 = 0    1
a  1.0  NaN
b  2.0  2.0
c  3.0  3.0
d  NaN  4.0 
type(sre2) = <class 'pandas.core.frame.DataFrame'>
--------------------------------------------------
sre3 = one  two
a  1.0  NaN
b  2.0  2.0
c  3.0  3.0
d  NaN  4.0 
type(sre3) = <class 'pandas.core.frame.DataFrame'>Process finished with exit code 0

二、修补(combine_first)

  • 根据index,df1的空值被df2替代

  • 如果df2的index多于df1,则更新到df1上,比如index=[‘a’,1]

  • update,直接df2覆盖df1,相同index位置

import numpy as np
import pandas as pd# 修补 pd.combine_first()df1 = pd.DataFrame([[np.nan, 3., 5.], [-4.6, np.nan, np.nan], [np.nan, 7., np.nan]])
df2 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5., 1.6, 4]], index=[1, 2])
df3 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5., 1.6, 4]], index=['a', 1])
print("df1 = \n", df1)
print('-' * 50)
print("df2 = \n", df2)
print('-' * 200)# 根据index,df1的空值被df2替代
data1 = df1.combine_first(df2)
print("data1 = \n", data1)
print('-' * 200)# 如果df2的index多于df1,则更新到df1上,比如index=['a',1]
data2 = df1.combine_first(df3)
print("data2 = \n", data2)
print('-' * 200)# update,直接df2覆盖df1,相同index位置
df1.update(df2)
print("df1 = \n", df1)

打印结果:

df1 = 0    1    2
0  NaN  3.0  5.0
1 -4.6  NaN  NaN
2  NaN  7.0  NaN
--------------------------------------------------
df2 = 0    1    2
1 -42.6  NaN -8.2
2  -5.0  1.6  4.0
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
data1 = 0    1    2
0  NaN  3.0  5.0
1 -4.6  NaN -8.2
2 -5.0  7.0  4.0
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
data2 = 0    1    2
0   NaN  3.0  5.0
1  -4.6  1.6  4.0
2   NaN  7.0  NaN
a -42.6  NaN -8.2
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
df1 = 0    1    2
0   NaN  3.0  5.0
1 -42.6  NaN -8.2
2  -5.0  1.6  4.0Process finished with exit code 0

这篇关于Pandas-高级处理(二):连接与修补【concat(参数:axis、join、keys)、combine_first(根据index,df1的空值被df2替代)】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128673

相关文章

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

一文带你了解SpringBoot中启动参数的各种用法

《一文带你了解SpringBoot中启动参数的各种用法》在使用SpringBoot开发应用时,我们通常需要根据不同的环境或特定需求调整启动参数,那么,SpringBoot提供了哪些方式来配置这些启动参... 目录一、启动参数的常见传递方式二、通过命令行参数传递启动参数三、使用 application.pro

java String.join()的使用小结

《javaString.join()的使用小结》String.join()是Java8引入的一个实用方法,用于将多个字符串按照指定分隔符连接成一个字符串,本文主要介绍了javaString.join... 目录1. 方法定义2. 基本用法2.1 拼接多个字符串2.2 拼接集合中的字符串3. 使用场景和示例3

Windows Server服务器上配置FileZilla后,FTP连接不上?

《WindowsServer服务器上配置FileZilla后,FTP连接不上?》WindowsServer服务器上配置FileZilla后,FTP连接错误和操作超时的问题,应该如何解决?首先,通过... 目录在Windohttp://www.chinasem.cnws防火墙开启的情况下,遇到的错误如下:无法与

基于@RequestParam注解之Spring MVC参数绑定的利器

《基于@RequestParam注解之SpringMVC参数绑定的利器》:本文主要介绍基于@RequestParam注解之SpringMVC参数绑定的利器,具有很好的参考价值,希望对大家有所帮助... 目录@RequestParam注解:Spring MVC参数绑定的利器什么是@RequestParam?@

浅析CSS 中z - index属性的作用及在什么情况下会失效

《浅析CSS中z-index属性的作用及在什么情况下会失效》z-index属性用于控制元素的堆叠顺序,值越大,元素越显示在上层,它需要元素具有定位属性(如relative、absolute、fi... 目录1. z-index 属性的作用2. z-index 失效的情况2.1 元素没有定位属性2.2 元素处

Java使用多线程处理未知任务数的方案介绍

《Java使用多线程处理未知任务数的方案介绍》这篇文章主要为大家详细介绍了Java如何使用多线程实现处理未知任务数,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 知道任务个数,你可以定义好线程数规则,生成线程数去跑代码说明:1.虚拟线程池:使用 Executors.newVir

一文带你深入了解Python中的GeneratorExit异常处理

《一文带你深入了解Python中的GeneratorExit异常处理》GeneratorExit是Python内置的异常,当生成器或协程被强制关闭时,Python解释器会向其发送这个异常,下面我们来看... 目录GeneratorExit:协程世界的死亡通知书什么是GeneratorExit实际中的问题案例

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

kotlin中的行为组件及高级用法

《kotlin中的行为组件及高级用法》Jetpack中的四大行为组件:WorkManager、DataBinding、Coroutines和Lifecycle,分别解决了后台任务调度、数据驱动UI、异... 目录WorkManager工作原理最佳实践Data Binding工作原理进阶技巧Coroutine