强化学习——马尔可夫奖励过程的理解

2024-05-14 03:20

本文主要是介绍强化学习——马尔可夫奖励过程的理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

目录

  • 一、马尔可夫奖励过程
    • 1.回报
    • 2.价值函数
  • 参考文献

一、马尔可夫奖励过程

  在马尔可夫过程的基础上加入奖励函数 r r r 和折扣因子 γ \gamma γ,就可以得到马尔可夫奖励过程(Markov reward process)。一个马尔可夫奖励过程由 < S , P , r , γ > <S,P,r,\gamma > <S,P,r,γ> 构成,各个组成元素的含义如下:

  • S S S 是有限状态的集合。
  • P P P 是状态转移矩阵。
  • r r r 是奖励函数,某个状态 s s s 的奖励 r ( s ) r(s) r(s) 指转移到该状态时可以获得奖励的期望。
  • γ \gamma γ 是折扣因子, γ \gamma γ 的取值范围为 [ 0 , 1 ) [0,1) [0,1)。引入折扣因子的理由为远期利益具有一定不确定性,有时我们更希望能够尽快获得一些奖励,所以我们需要对远期利益打一些折扣。接近 1 1 1 γ \gamma γ 更关注长期的累计奖励,接近 0 的 γ \gamma γ 更考虑短期奖励。

1.回报

  在一个马尔可夫奖励过程中,回报 G t G_{t} Gt 是指从某个起始时刻 t t t 的状态 S t S_{t} St 开始,直到达到终止状态时,所有获得的奖励经过时间衰减后的总和。这种计算方式可以帮助评估在整个过程中的总体收益或成本,对于决策和策略评估尤为重要。

G t = R t + γ R t + 1 + γ 2 R t + 2 + ⋯ = ∑ k = 0 ∞ γ k R t + k G_{t}=R_{t}+\gamma R_{t+1}+\gamma^{2}R_{t+2}+\cdots =\sum_{k=0}^{\infty }\gamma^{k}R_{t+k} Gt=Rt+γRt+1+γ2Rt+2+=k=0γkRt+k

  其中, R t R_{t} Rt 表示在 t t t 时刻获得的奖励。

  在图2中,我们基于之前提到的马尔可夫过程的例子,进一步引入了奖励函数,从而构建成一个马尔可夫奖励过程。在这个过程中,不同状态的进入会带来不同的奖励值。例如,进入状态 s 2 s_{2} s2 会获得奖励 − 2 -2 2 ,这意味着我们通常不希望进入这个状态。相反,进入状态 s 4 s_{4} s4 可以获得最高的奖励,即 10 10 10 分。而当进入状态 s 6 s_{6} s6 时,虽然奖励为零,但此时状态序列将终止。这种设置帮助我们了解和评估进入每个状态的奖励或代价。

在这里插入图片描述

图2 马尔可夫奖励过程示例

  比如选取 s 1 s_{1} s1 为起始状态,设置 γ = 0.5 \gamma=0.5 γ=0.5,采样到一条状态序列为 s 1 → s 2 → s 3 → s 6 s_{1} \to s_{2} \to s_{3} \to s_{6} s1s2s3s6 ,就可以计算 s 1 s_{1} s1 的回报 G t G_{t} Gt ,得到 G 1 = − 1 + 0.5 × ( − 2 ) + 0. 5 2 × ( − 2 ) = − 2.5 G_{1}=-1+0.5×(-2)+0.5^{2}×(-2)=-2.5 G1=1+0.5×(2)+0.52×(2)=2.5

  图2所示过程的马尔可夫奖励过程的回报计算Python代码如下:

import numpy as np
np.random.seed(0)
# 定义状态转移概率矩阵P
P = [[0.9, 0.1, 0.0, 0.0, 0.0, 0.0],[0.5, 0.0, 0.5, 0.0, 0.0, 0.0],[0.0, 0.0, 0.0, 0.6, 0.0, 0.4],[0.0, 0.0, 0.0, 0.0, 0.3, 0.7],[0.0, 0.2, 0.3, 0.5, 0.0, 0.0],[0.0, 0.0, 0.0, 0.0, 0.0, 1.0],
]
P = np.array(P)rewards = [-1, -2, -2, 10, 1, 0]  # 定义奖励函数
gamma = 0.5  # 定义折扣因子# 给定一条序列,计算从某个索引(起始状态)开始到序列最后(终止状态)得到的回报
def compute_return(start_index, chain, gamma):G = 0for i in reversed(range(start_index, len(chain))):G = gamma * G + rewards[chain[i] - 1]return G# 一个状态序列,s1-s2-s3-s6
chain = [1, 2, 3, 6]
start_index = 0
G = compute_return(start_index, chain, gamma)
print("根据本序列计算得到回报为:%s。" % G)

2.价值函数

  在马尔可夫奖励过程中,从某个状态出发所能获得的未来累积奖励的期望(即期望回报)被称为该状态的价值。这种期望值反映了一个状态的总体益处或收益。我们将这些价值整合成一个称为价值函数的概念。价值函数将某个状态作为输入,并输出该状态的价值。这种函数是评估不同状态在长期收益上的重要性和效用的关键工具。价值函数写为: V ( s ) = E [ G t ∣ S t = s ] V(s)=\mathbb{E}[G_{t}|S_{t}=s] V(s)=E[GtSt=s],可展开为:

在这里插入图片描述

  在上述方程的最后一个等号中,我们可以看到两部分内容。首先,即时奖励的期望值正是奖励函数给出的值,表示为 E [ R t ∣ S t = s ] = r ( s ) \mathbb{E}[R_{t}|S_{t}=s]=r(s) E[RtSt=s]=r(s)。其次,方程中的剩余部分表示从状态 s s s 出发,根据各个转移概率计算未来奖励的期望值,这可以用 E [ γ V ( S t + 1 ) ∣ S t = s ] \mathbb{E}[\gamma V(S_{t+1})|S_{t}=s] E[γV(St+1)St=s] 表达。这个部分将当前状态到其他可能状态的转移概率与那些状态的价值相乘,然后求和,从而计算出从状态 s s s 出发的期望未来回报。可以得到:

V ( s ) = r ( s ) + γ ∑ s ′ ∈ S p ( s ′ ∣ s ) V ( s ′ ) V(s)=r(s)+\gamma \sum_{s^{'}\in S}p(s^{'}|s)V(s^{'}) V(s)=r(s)+γsSp(ss)V(s)

  上式就是马尔可夫奖励过程中非常有名的贝尔曼方程(Bellman equation),对每一个状态都成立。即一个状态的价值等于在该状态获得的即时奖励和从该状态转移到其他状态后预期获得的未来奖励的总和。

  贝尔曼方程的重要性在于它提供了一种迭代求解各状态价值的方法,使我们能够有效地评估和优化决策过程。在实际应用中,通过迭代更新每个状态的价值,直至收敛到稳定值,我们可以得到每个状态的最终价值。这对于规划和决策具有重要的意义,尤其是在复杂系统和机器学习领域,如强化学习,其中贝尔曼方程是核心算法之一。

参考文献

[1] 动手学强化学习

[2] 强化学习(Reinforcement Learning)

这篇关于强化学习——马尔可夫奖励过程的理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/987612

相关文章

SpringBoot全局异常拦截与自定义错误页面实现过程解读

《SpringBoot全局异常拦截与自定义错误页面实现过程解读》本文介绍了SpringBoot中全局异常拦截与自定义错误页面的实现方法,包括异常的分类、SpringBoot默认异常处理机制、全局异常拦... 目录一、引言二、Spring Boot异常处理基础2.1 异常的分类2.2 Spring Boot默

SpringBoo WebFlux+MongoDB实现非阻塞API过程

《SpringBooWebFlux+MongoDB实现非阻塞API过程》本文介绍了如何使用SpringBootWebFlux和MongoDB实现非阻塞API,通过响应式编程提高系统的吞吐量和响应性能... 目录一、引言二、响应式编程基础2.1 响应式编程概念2.2 响应式编程的优势2.3 响应式编程相关技术

SpringBoot的全局异常拦截实践过程

《SpringBoot的全局异常拦截实践过程》SpringBoot中使用@ControllerAdvice和@ExceptionHandler实现全局异常拦截,@RestControllerAdvic... 目录@RestControllerAdvice@ResponseStatus(...)@Except

线程池ThreadPoolExecutor应用过程

《线程池ThreadPoolExecutor应用过程》:本文主要介绍如何使用ThreadPoolExecutor创建线程池,包括其构造方法、常用方法、参数校验以及如何选择合适的拒绝策略,文章还讨论... 目录ThreadPoolExecutor构造说明及常用方法为什么强制要求使用ThreadPoolExec

springboot3.x使用@NacosValue无法获取配置信息的解决过程

《springboot3.x使用@NacosValue无法获取配置信息的解决过程》在SpringBoot3.x中升级Nacos依赖后,使用@NacosValue无法动态获取配置,通过引入SpringC... 目录一、python问题描述二、解决方案总结一、问题描述springboot从2android.x

MySQL数据目录迁移的完整过程

《MySQL数据目录迁移的完整过程》文章详细介绍了将MySQL数据目录迁移到新硬盘的整个过程,包括新硬盘挂载、创建新的数据目录、迁移数据(推荐使用两遍rsync方案)、修改MySQL配置文件和重启验证... 目录1,新硬盘挂载(如果有的话)2,创建新的 mysql 数据目录3,迁移 MySQL 数据(推荐两

MyBatis-Plus逻辑删除实现过程

《MyBatis-Plus逻辑删除实现过程》本文介绍了MyBatis-Plus如何实现逻辑删除功能,包括自动填充字段、配置与实现步骤、常见应用场景,并展示了如何使用remove方法进行逻辑删除,逻辑删... 目录1. 逻辑删除的必要性编程1.1 逻辑删除的定义1.2 逻辑删php除的优点1.3 适用场景2.

JAVA SpringBoot集成Jasypt进行加密、解密的详细过程

《JAVASpringBoot集成Jasypt进行加密、解密的详细过程》文章详细介绍了如何在SpringBoot项目中集成Jasypt进行加密和解密,包括Jasypt简介、如何添加依赖、配置加密密钥... 目录Java (SpringBoot) 集成 Jasypt 进行加密、解密 - 详细教程一、Jasyp

Java通过ServerSocket与Socket实现通信过程

《Java通过ServerSocket与Socket实现通信过程》本文介绍了Java中的ServerSocket和Socket类,详细讲解了它们的构造方法和使用场景,并通过一个简单的通信示例展示了如何... 目录1 ServerSocket2 Socket3 服务器端4 客户端5 运行结果6 设置超时总结1

GO语言zap日志库理解和使用方法示例

《GO语言zap日志库理解和使用方法示例》Zap是一个高性能、结构化日志库,专为Go语言设计,它由Uber开源,并且在Go社区中非常受欢迎,:本文主要介绍GO语言zap日志库理解和使用方法的相关资... 目录1. zap日志库介绍2.安装zap库3.配置日志记录器3.1 Logger3.2 Sugared